基于截断牛顿法的频率域全波形反演方法  被引量:2

Full waveform inversion in frequency domain using the truncated Newton method

在线阅读下载全文

作  者:周斯琛 李振春[1] 张敏[1] 张凯[1] 

机构地区:[1]中国石油大学(华东)地球科学与技术学院,山东青岛266580

出  处:《物探与化探》2017年第1期147-152,共6页Geophysical and Geochemical Exploration

基  金:山东省自然科学基金项目(ZR2013DL012);高等学校博士学科点专项科研基金项目(20120133120012);国家自然科学基金项目(41504100)

摘  要:全波形反演方法可以视为大型非线性最小化问题。其中Hessian算子对反演结果有着重要的影响,传统的优化方法只能近似地表示Hessian算子,反演精度较低,收敛速度较慢,且对于反演目标照明不足的深部区域,往往出现参数无法聚焦的情况。而一种新的优化方法截断牛顿法,通过计算Hessian矩阵与已知向量乘积的形式,能够获得更精确的Hessian算子信息,从而解决以上问题。本文基于截断牛顿法在频率域实现全波形反演,通过模型试算表明,截断牛顿法相对于有限内存BFGS(Limited-memory Broyden-Fletcher-Goldfarb-Shanno,L-BFGS)法,能够得到更精确的反演结果,同时能提高收敛速度,尤其对于照明不足的深部区域,截断牛顿法有更明显的优势。The full waveform inversion method can be regarded as a large nonlinear minimization problem. 1n this method,Hessian oper-ator exerts significant influence on the inversion result. Nevertheless,traditional optimization methods can only express the Hessian oper-ator approximately, which will lead to low inversion accuracy, slow convergence speed, and the result that the parameter cannot be fo-cused, especially for deep inversion region target with poor illumination. 1n contrast, the truncated Newton method, a new optimization method ,can obtain the information of Hessian operator more accurately by the computation of the product of Hessian matrix and a known vector,and thus can solve the problem mentioned above.Therefore,this paper achieves full waveform inversion in the frequency domain based on truncated Newton method. And the model test shows that the truncated Newton method has more precise inversion results and improves the efficiency of inversion, especially for deep area with insufficient illumination compared with the limited memory BFGS (Limited-memory Broyden-Fletcher-Goldfarb-Shanno, L-BFGS) method.

关 键 词:全波形反演 截断牛顿法 Hessian算子 频率域 

分 类 号:P631.4[天文地球—地质矿产勘探]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象