检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河南工学院计算机科学与技术系,河南新乡453000 [2]河南师范大学网络中心,河南新乡453000
出 处:《计算机应用研究》2017年第5期1480-1483,1486,共5页Application Research of Computers
基 金:河南省高等学校重点科研资助项目(15A520063;16A520083)
摘 要:由于二分网络特殊的二分结构,使得基于单模网络的现有社区发现算法无法适用。提出一种基于Kullback-Leibler距离的二分网络社区发现算法,该算法将异质节点间的连接关系转换为其在用户节点集上的连接概率分布,并建立基于概率分布的KL相似度衡量节点连接模式的差异性,从而克服二分结构对节点相似性评估的不利影响,实现对二分网络异质节点的社区发现。在人工网络和真实网络上的实验和分析表明,该算法能够有效挖掘二分网络社区结构,改善二分网络社区发现的准确性和效率。The usual community detection methods are not applicable to bipartite networks due to their special 2-mode structure. To identifying the community structure of bipartite networks,this paper proposed a novel algorithm based on KullbackLeibler( KL) divergence between the 2-mode nodes. According to the connecting conditions between user set and object set,the algorithm obtained the link probability distribution on user set of bipartite networks,and developed KL similarity as a metric to evaluate the difference of node link patterns,and then detected the communities in bipartite networks overcoming the limitation of the 2-mode structure on nodes clustering. The experimental results and analysis in compute-generated and real network all show that this algorithm can effectively mine the meaningful community structures in bipartite networks,and improves the performance of community identification in the accuracy and efficiency.
关 键 词:社区发现 二分网络 连接模式 Kullback-Leibler距离
分 类 号:TP393[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.90