检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]大连海事大学轮机工程学院,辽宁大连116026
出 处:《上海海事大学学报》2017年第1期79-83,共5页Journal of Shanghai Maritime University
基 金:辽宁省自然科学基金(2014025006)
摘 要:针对当前优化算法在处理大规模舰船电网重构问题时易陷于局部极值的缺点,提出一种基于改进的无尺度网络的高斯动态粒子群优化(Gaussian Dynamic Particle Swarm Optimization,GDPSO)算法.该算法融合无尺度网络理论与种群拓扑结构,采用改进的无尺度网络BA模型随机地逐渐增加种群拓扑规模,增加种群多样性,提高种群跳出局部极值的能力.以某20节点和扩充为60节点的舰船电网为例进行故障后重构测试.结果表明,该算法对多维度舰船电网重构有效.To overcome the shortcoming that the existing optimization algorithm is prone to a local extre-mum when dealing with large-scale reconfiguration issues of ship power system, Gaussian Dynamic Parti-cle Swarm Optimization( GDPSO) algorithm based on the improved scale-free network is proposed. This algorithm integrates the scale-free network theory with the population topology structure. It adopts the modified BA model of scale-free network to increase the scale of population topology randomly, which can increase the population diversity and improve the ability of population jumping out of the local extremum. Fault reconstruction tests are run with the cases of a 20-node ship power system and an expanded 60-node ship power system. Results show that the proposed algorithm is effective for multi-dimensional ship power system reconfiguration.
关 键 词:舰船电网 故障重构 高斯动态粒子群优化 无尺度网络
分 类 号:U665.12[交通运输工程—船舶及航道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222