机构地区:[1]Institute of Applied Physics and Computational Mathematics,Beijing 100094,China [2]Center for Applied Physics and Technology,HEDPS,Peking University,Beijing 100871,China [3]IFSA Collaborative Innovation Center of MoE,Shanghai Jiaotong University,Shanghai 200240,China [4]Institute of Fusion Theory and Simulation,Zhejiang University,Hangzhou 310027,China [5]Graduate School,China Academy of Engineering Physics,Beijing 100088,China [6]Research Center of Laser Fusion,China Academy of Engineering Physics,Mianyang 621900,China [7]Shanghai Institute of Laser Plasma,Shanghai 201800,China [8]State Key Laboratory for GeoMechanics and Deep Underground Engineering,China University of Mining and Technology,Beijing 100083,China
出 处:《Science China(Physics,Mechanics & Astronomy)》2017年第5期1-35,共35页中国科学:物理学、力学、天文学(英文版)
基 金:supported by the National Natural Science Foundation of China(Grant Nos.11275031,11675026,11475032,11475034,11575033,and 11274026);the Foundation of President of Chinese Academy of Engineering Physics(Grant No.2014-1-040);the National Basic Research Program of China(Grant No.2013CB834100)
摘 要:Inertial fusion energy (IFE) has been considered a promising, nearly inexhaustible source of sustainable carbon-free power for the world's energy future. It has long been recognized that the control of hydrodynamic instabilities is of critical importance for ignition and high-gain in the inertial-confinement fusion (ICF) hot-spot ignition scheme. In this mini-review, we summarize the progress of theoretical and simulation research of hydrodynamic instabilities in the ICF central hot-spot implosion in our group over the past decade. In order to obtain sufficient understanding of the growth of hydrodynamic instabilities in ICF, we first decompose the problem into different stages according to the implosion physics processes. The decomposed essential physics pro- cesses that are associated with ICF implosions, such as Rayleigh-Taylor instability (RTI), Richtmyer-Meshkov instability (RMI), Kelvin-Helmholtz instability (KHI), convergent geometry effects, as well as perturbation feed-through are reviewed. Analyti- cal models in planar, cylindrical, and spherical geometries have been established to study different physical aspects, including density-gradient, interface-coupling, geometry, and convergent effects. The influence of ablation in the presence of preheating on the RTI has been extensively studied by numerical simulations. The KHI considering the ablation effect has been discussed in detail for the first time. A series of single-mode ablative RTI experiments has been performed on the Shenguang-II laser facility. The theoretical and simulation research provides us the physical insights of linear and weakly nonlinear growths, and nonlinear evolutions of the hydrodynamic instabilities in ICF implosions, which has directly supported the research of ICF ignition target design. The ICF hot-spot ignition implosion design that uses several controlling features, based on our current understanding of hydrodynamic instabilities, to address shell implosion stability, has been briefly described, severaInertial fusion energy(IFE)has been considered a promising,nearly inexhaustible source of sustainable carbon-free power for the world's energy future.It has long been recognized that the control of hydrodynamic instabilities is of critical importance for ignition and high-gain in the inertial-confinement fusion(ICF)hot-spot ignition scheme.In this mini-review,we summarize the progress of theoretical and simulation research of hydrodynamic instabilities in the ICF central hot-spot implosion in our group over the past decade.In order to obtain sufficient understanding of the growth of hydrodynamic instabilities in ICF,we first decompose the problem into different stages according to the implosion physics processes.The decomposed essential physics processes that are associated with ICF implosions,such as Rayleigh-Taylor instability(RTI),Richtmyer-Meshkov instability(RMI),Kelvin-Helmholtz instability(KHI),convergent geometry effects,as well as perturbation feed-through are reviewed.Analytical models in planar,cylindrical,and spherical geometries have been established to study different physical aspects,including density-gradient,interface-coupling,geometry,and convergent effects.The influence of ablation in the presence of preheating on the RTI has been extensively studied by numerical simulations.The KHI considering the ablation effect has been discussed in detail for the first time.A series of single-mode ablative RTI experiments has been performed on the Shenguang-Ⅱlaser facility.The theoretical and simulation research provides us the physical insights of linear and weakly nonlinear growths,and nonlinear evolutions of the hydrodynamic instabilities in ICF implosions,which has directly supported the research of ICF ignition target design.The ICF hot-spot ignition implosion design that uses several controlling features,based on our current understanding of hydrodynamic instabilities,to address shell implosion stability,has been briefly described,several of which are novel.
关 键 词:hydrodynamic instabilities inertial-confinement fusion implosions Rayleigh-Taylor instability Richtmyer-Meshkov in-stability Kelvin-Helmholtz instability convergent geometry effects perturbation feed-through
分 类 号:TL632[核科学技术—核技术及应用] O35[理学—流体力学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...