检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]辽宁师范大学计算机与信息技术学院,辽宁大连116029
出 处:《计算机应用与软件》2017年第4期226-232,264,共8页Computer Applications and Software
基 金:国家自然科学基金项目(41271422);辽宁省教育厅自然科学基金项目(12012379)
摘 要:基于纹理滤波的分割方法被广泛用于遥感图像森林植被分割。遥感图像中森林植被纹理的多样性使得固定参数的纹理滤波方法不能准确表达纹理的特征,导致分割精度不高。提出一种自动适应森林植被纹理的滤波方法,根据遥感图像中典型森林植被区域的纹理基础属性设置滤波参数,实现有针对性的纹理滤波处理。通过蓝噪声探测方法和灰度共生矩阵统计方法获取典型森林植被区域的纹理基元在尺度和灰度分布等方面的属性,结合森林植被纹理的先验知识设置纹理滤波参数,包括滤波器的窗口尺寸、方向、频率和强度以及用于表达纹理特征的局部谱直方图的积分窗口尺寸等。分割实验表明,该方法充分利用了图像中森林植被纹理的特点,纹理滤波表达的特征区分度更大。The segmentation method based on texture filtering is widely used in remote sensing image forest vegetation segmentation. The diversity of forest vegetation texture in remote sensing images makes the texture filtering method of fixed parameters can not express texture features accurately, resulting in low accuracy of segmentation. A filtering method is proposed to automatically adapt to the texture of forest vegetation. The filtering parameters are set according to the texture basic attribute of the typical forest vegetation area in remote sensing image to realize the targeted texture filtering. The attributes of the texture primitive elements in the typical forest vegetation area are obtained by the blue noise detection method and the gray level co-occurrence matrix statistic method. The texture parameters including the window size, direction, frequency and intensity of the filter and the integral window size of the local spectral histogram for expressing the texture feature are set according to the prior knowledge of the forest vegetation texture. Segmentation experiments show that this method makes full use of the characteristics of the forest vegetation texture in the image, and the feature of the texture filter is more distinguished.
关 键 词:森林植被分割 纹理滤波 灰度共生矩阵 局部谱直方图
分 类 号:TP751.1[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28