检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张国云[1,2] 向灿群 吴健辉[1,2] 郭龙源[1,2] 涂兵[1,2]
机构地区:[1]湖南理工学院信息与通信工程学院,湖南岳阳414006 [2]复杂系统优化与控制湖南省普通高等学校重点实验室,湖南岳阳414006
出 处:《计算机应用与软件》2017年第4期243-248,共6页Computer Applications and Software
基 金:湖南省教育厅产业化培育项目(13CY021);湖南省教育厅开放基金项目(15K051)
摘 要:针对传统BP算法在车牌字符识别速度较慢和识别准确率较低的问题,提出一种改进的BP网络车牌字符识别方法。通过对BP算法的输入特征数优化,在不降低识别精度的情况下精简了输入层节点数,提升了识别速度。改进后的BP算法采用全参数自动调整,引入自适应学习率、动量因子、坡度因子,增加了BP算法的识别精度;同时通过更好的利用车牌字符特征和BP网络特征,降低了算法结构的复杂性,增强了算法的鲁棒性。实验结果表明,该算法在实际采集的自建整副车牌数据集上的识别率上比传统BP神经网络车牌识别算法提高近6.5%;在识别速度上提高近1.3 s。Aiming at the problem that the traditional BP algorithm is slow in the recognition speed of the license plate and the recognition accuracy is low, an improved BP neural network license plate character recognition method is proposed. By optimizing the input feature number of BP algorithm, the number of nodes in the input layer is reduced and the recognition speed is improved without reducing the recognition accuracy. The improved BP algorithm adopts the all parameter automatic adjustment and introduces adaptive learning rate, momentum factor and slope steepness factor, which increases the recognition accuracy of BP algorithm. At the same time, through better use of the license plate character features and BP network features, it reduced the complexity of the algorithm structure, and enhanced the robustness of the algorithm. The experimental results show that the recognition rate of the algorithm is 6.5% higher than that of the traditional BP neural network license plate recognition algorithm based on the self-built license plate data set, and the recognition speed is improved by 1.3 s.
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.31