Immobilization of Cu2+and Cd2+by earthworm manure derived biochar in acidic circumstance  被引量:8

Immobilization of Cu^(2+) and Cd^(2+) by earthworm manure derived biochar in acidic circumstance

在线阅读下载全文

作  者:Zhanghong Wang Fei Shen Dekui Shen Yahui Jiang Rui Xiao 

机构地区:[1]Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education,Southeast University,Nanjing 210096,China [2]Institute of Ecological and Environmental Science,Sichuan Agricultural University,Sichuan 611130,China [3]College of Natural Resources and Environment,Northwest A&F University,Yangling 712100,China

出  处:《Journal of Environmental Sciences》2017年第3期293-300,共8页环境科学学报(英文版)

基  金:supported by the National Natural Science Foundation of China(No.51476034);the National Basic Research Program(973)of China(No.2012CB215306);supported by“Program for Changjiang Scholars and Innovative Research Team in University”from the Ministry and Education of China(No.IRT13083)

摘  要:Earthworm manure, the by-product obtained from the disposing of biowastes by earthworm breeding, is largely produced and employed as a feedstock for biochar preparation through pyrolysis. For repairing acidic soil or acidic electroplating effluent, biochar physicochemical properties would suffer from some changes like an acidic washing process, which hence affected its application functions. Pristine biochar (UBC) from pyrolysis of earthworm manure at 700℃ and biochar treated by HCI (WBC) were comparatively investigated regarding their physicochemical properties, adsorption capability and adsorption mechanism of Cu2+ and Cd2+ from aqueous solution to explore the immobilization characteristics of biochar in acidic environment. After HCI treatment, the soluble ash content and phenolic-OH in the WBC sample was notably decreased against the increase of the carboxyl C=O, aromatic C=C and Si-O-Si, compared to that of UBC. All adsorption processes can be well described by Langmuir isotherm model. The calculated maximum adsorption capacity of Cu2+ and Cd2+ adsorption on UBC were 36.56 and 29.31 mg/g, respectively, which were higher than that of WBC (8.64 and 12.81 rag/g, respectively), indicating that HCI treatment significantly decreased biochar adsorption ability. Mechanism analysis revealed that alkali and alkaline earth metallic, salts (carbonates, phosphates and silicates), and surface functional groups were responsible for UBC adsorption, corresponding to ion exchange, precipitation and complexation, respectively. However, ion exchange made little contributions to WBC adsorption due to the great loss of soluble ash content. WBC adsorption was mainly attributed to the abundant exposure of silicates and surface functional groups (carboxyl C=O and aromatic C=C).Earthworm manure, the by-product obtained from the disposing of biowastes by earthworm breeding, is largely produced and employed as a feedstock for biochar preparation through pyrolysis. For repairing acidic soil or acidic electroplating effluent, biochar physicochemical properties would suffer from some changes like an acidic washing process, which hence affected its application functions. Pristine biochar (UBC) from pyrolysis of earthworm manure at 700℃ and biochar treated by HCI (WBC) were comparatively investigated regarding their physicochemical properties, adsorption capability and adsorption mechanism of Cu2+ and Cd2+ from aqueous solution to explore the immobilization characteristics of biochar in acidic environment. After HCI treatment, the soluble ash content and phenolic-OH in the WBC sample was notably decreased against the increase of the carboxyl C=O, aromatic C=C and Si-O-Si, compared to that of UBC. All adsorption processes can be well described by Langmuir isotherm model. The calculated maximum adsorption capacity of Cu2+ and Cd2+ adsorption on UBC were 36.56 and 29.31 mg/g, respectively, which were higher than that of WBC (8.64 and 12.81 rag/g, respectively), indicating that HCI treatment significantly decreased biochar adsorption ability. Mechanism analysis revealed that alkali and alkaline earth metallic, salts (carbonates, phosphates and silicates), and surface functional groups were responsible for UBC adsorption, corresponding to ion exchange, precipitation and complexation, respectively. However, ion exchange made little contributions to WBC adsorption due to the great loss of soluble ash content. WBC adsorption was mainly attributed to the abundant exposure of silicates and surface functional groups (carboxyl C=O and aromatic C=C).

关 键 词:Biochar Earthworm manure AdsorptionHC1 

分 类 号:X713[环境科学与工程—环境工程] X703

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象