Variation of passivation behavior induced by sputtered energetic particles and thermal annealing for ITO/SiO_x/Si system  

Variation of passivation behavior induced by sputtered energetic particles and thermal annealing for ITO/SiO_x/Si system

在线阅读下载全文

作  者:高明 杜汇伟 杨洁 赵磊 徐静 马忠权 

机构地区:[1]SHU-SOEN's Research and Development Laboratory,Department of Physics,Shanghai University,Shanghai 200444,China [2]Instrumental Analysis and Research Center,Shanghai University,Shanghai 200444,China

出  处:《Chinese Physics B》2017年第4期261-269,共9页中国物理B(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Grant Nos.61274067,60876045,and 61674099);the Research and Development Foundation of SHU-SOENs PV Joint Laboratory,China(Grant No.SS-E0700601)

摘  要:The damage on the atomic bonding and electronic state in a SiO_x(1.4-2.3 nm)/c-Si(150 μm) interface has been investigated.This occurred in the process of depositing indium tin oxide(ITO) film onto the silicon substrate by magnetron sputtering.We observe that this damage is caused by energetic particles produced in the plasma(atoms,ions,and UV light).The passivation quality and the variation on interface states of the SiO_x/c-Si system were mainly studied by using effective minority carrier lifetime(τ_(eff)) measurement as a potential evaluation.The results showed that the samples' τ_(eff)was reduced by more than 90%after ITO formation,declined from 107 μs to 5 μs.Following vacuum annealing at 200 ℃,the τ_(eff) can be restored to 30 μs.The components of Si to O bonding states at the SiO_x/c-Si interface were analyzed by x-ray photoelectron spectroscopy(XPS) coupled with depth profiling.The amorphous phase of the SiO_x layer and the "atomistic interleaving structure" at the SiO_x/c-Si interface was observed by a transmission electron microscope(TEM).The chemical configuration of the Si-O fraction within the intermediate region is the main reason for inducing the variation of Si dangling bonds(or interface states) and effective minority carrier lifetime.After an appropriate annealing,the reduction of the Si dangling bonds between SiO_x and near the c-Si surface is helpful to improve the passivation effect.The damage on the atomic bonding and electronic state in a SiO_x(1.4-2.3 nm)/c-Si(150 μm) interface has been investigated.This occurred in the process of depositing indium tin oxide(ITO) film onto the silicon substrate by magnetron sputtering.We observe that this damage is caused by energetic particles produced in the plasma(atoms,ions,and UV light).The passivation quality and the variation on interface states of the SiO_x/c-Si system were mainly studied by using effective minority carrier lifetime(τ_(eff)) measurement as a potential evaluation.The results showed that the samples' τ_(eff)was reduced by more than 90%after ITO formation,declined from 107 μs to 5 μs.Following vacuum annealing at 200 ℃,the τ_(eff) can be restored to 30 μs.The components of Si to O bonding states at the SiO_x/c-Si interface were analyzed by x-ray photoelectron spectroscopy(XPS) coupled with depth profiling.The amorphous phase of the SiO_x layer and the "atomistic interleaving structure" at the SiO_x/c-Si interface was observed by a transmission electron microscope(TEM).The chemical configuration of the Si-O fraction within the intermediate region is the main reason for inducing the variation of Si dangling bonds(or interface states) and effective minority carrier lifetime.After an appropriate annealing,the reduction of the Si dangling bonds between SiO_x and near the c-Si surface is helpful to improve the passivation effect.

关 键 词:sputtered damage SiO_x/c-Si interface effective minority carrier lifetime XPS 

分 类 号:TM914.4[电气工程—电力电子与电力传动] O484[理学—固体物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象