Can short-term and small-scale experiments reflect nutrient limitation on phytoplankton in natural lakes?  被引量:2

Can short-term and small-scale experiments reflect nutrient limitation on phytoplankton in natural lakes?

在线阅读下载全文

作  者:王海军 李艳 冯伟松 于清 肖绪诚 梁小民 邵建春 马硕楠 王洪铸 

机构地区:[1]State Key Laboratory of Freshwater Ecology and Biotechnology,Institute of Hydrobiology,Chinese Academy of Sciences,Wuhan 430072,China [2]University of Chinese Academy of Sciences,Beijing 100049,China [3]Huazhong Agricultural University,Wuhan 430070,China

出  处:《Chinese Journal of Oceanology and Limnology》2017年第3期546-556,共11页中国海洋湖沼学报(英文版)

基  金:Supported by the State Key Laboratory of Freshwater Ecology and Biotechnology(Nos.2014FB14,2011FBZ14);Science and Technology Support Program of Hubei Province(No.2015BBA225);the Youth Innovation Association of Chinese Academy of Sciences(No.2014312)to WANG Haijun

摘  要:Whether it is necessary to reduce nitrogen(N) and/or phosphorus(P) input to mitigate lake eutrophication is controversial. The controversy stems mainly from differences in time and space in previous studies that support the contrasting ideas. To test the response of phytoplankton to various combinations of nutrient control strategies in mesocosms and the possibility of reflecting the conditions in natural ecosystems with short-term experiments, a 9-month experiment was carried out in eight 800-L tanks with four nutrient level combinations(+N+P,-N+P, +N-P, and-N-P), with an 18-month whole-ecosystem experiment in eight ~800-m^2 ponds as the reference. Phytoplankton abundance was determined by P not N, regardless of the initial TN/TP level, which was in contrast to the nutrient limitation predicted by the N/P theory. Net natural N inputs were calculated to be 4.9, 6.8, 1.5, and 3.0 g in treatments +N+P,-N+P, +N-P, and-N-P, respectively, suggesting that N deficiency and P addition may promote natural N inputs to support phytoplankton development. However, the compensation process was slow, as suggested by an observed increase in TN after 3 weeks in-N+P and 2 months in-N-P in the tank experiment, and after 3 months in-N?+P and ~3 months in-N-P in our pond experiment. Obviously, such a slow process cannot be simulated in short-term experiments. The natural N inputs cannot be explained by planktonic N-fixation because N-fixing cyanobacteria were scarce, which was probably because there was a limited pool of species in the tanks. Therefore, based on our results we argue that extrapolating short-term, small-scale experiments to large natural ecosystems does not give reliable, accurate results.Whether it is necessary to reduce nitrogen (N) and/or phosphorus (P) input to mitigate lake eutrophication is controversial. The controversy stems mainly from differences in time and space in previous studies that support the contrasting ideas. To test the response of phytoplankton to various combinations of nutrient control strategies in mesocosms and the possibility of reflecting the conditions in natural ecosystems with short-term experiments, a 9-month experiment was carried out in eight 800-L tanks with four nutrient level combinations (+N+P, -N+P, +N-P, and -N-P), with an 18-month whole-ecosystem experiment in eight -800-m2 ponds as the reference. Phytoplankton abundance was determined by P not N, regardless of the initial TN/TP level, which was in contrast to the nutrient limitation predicted by the N/P theory. Net natural N inputs were calculated to be 4.9, 6.8, 1.5, and 3.0 g in treatments +N+P, -N+P, +N-P, and -N-P, respectively, suggesting that N deficiency and P addition may promote natural N inputs to support phytoplankton development. However, the compensation process was slow, as suggested by an observed increase in TN after 3 weeks in -N+P and 2 months in -N-P in the tank experiment, and after 3 months in -N+P and -3 months in -N-P in our pond experiment. Obviously, such a slow process cannot be simulated in short-term experiments. The natural N inputs cannot be explained by planktonic N-fixation because N-fixing cyanobacteria were scarce, which was probably because there was a limited pool of species in the tanks. Therefore, based on our results we argue that extrapolating short-term, small-scale experiments to large natural ecosystems does not give reliable, accurate results.

关 键 词:EUTROPHICATION nutrient control EXTRAPOLATION mesocosm experiment 

分 类 号:Q948.8[生物学—植物学] X524[环境科学与工程—环境工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象