Numerical simulation of Corti stimulated by fluid in tunnel of Corti  被引量:2

Numerical simulation of Corti stimulated by fluid in tunnel of Corti

在线阅读下载全文

作  者:Yiqiang CHEN Wenjuan YAO Shaofeng LIU 

机构地区:[1]Department of Civil Engineering,Shanghai University,Shanghai 200444,China

出  处:《Applied Mathematics and Mechanics(English Edition)》2017年第5期737-748,共12页应用数学和力学(英文版)

基  金:Project supported by the National Natural Science Foundation of China(Nos.11272200 and 11572186)

摘  要:In this paper, the effect of fluid in a tunnel of Corti (TC) on organ of Corti (OC) is studied. A three-dimensional OC model including basilar membrane (BM), tectorial membrane (TM), inner and outer hair cells (OHCs), and reticular lamina (RL) is established by COMSOL. An initial pressure is applied to the fluid in the TC. The frequency response of the structure is analyzed, and the displacement of the BM is achieved. The results are in good agreement with the experimental data, confirming validity of the finite element model. Based on the model, the effect of fluid in the TC on the OC is studied. The results show that, when the pressure gradient is absent in the fluid, with the increase of the initial fluid pressure, the displacement of the BM increases. However, when the initial fluid pressure increases to a certain value, the increase rate of the displacement of the BM becomes very slow. The movement of the fluid amplifies the BM movement. Furthermore, the movement of the fluid can strengthen the movement of the OHCs and the shear movement of the stereocilia, especially in the vicinity of the characteristic frequency at which the amplification effect reaches a peak. Nevertheless, a pressure gradient in the fluid affects the BM movement.In this paper, the effect of fluid in a tunnel of Corti (TC) on organ of Corti (OC) is studied. A three-dimensional OC model including basilar membrane (BM), tectorial membrane (TM), inner and outer hair cells (OHCs), and reticular lamina (RL) is established by COMSOL. An initial pressure is applied to the fluid in the TC. The frequency response of the structure is analyzed, and the displacement of the BM is achieved. The results are in good agreement with the experimental data, confirming validity of the finite element model. Based on the model, the effect of fluid in the TC on the OC is studied. The results show that, when the pressure gradient is absent in the fluid, with the increase of the initial fluid pressure, the displacement of the BM increases. However, when the initial fluid pressure increases to a certain value, the increase rate of the displacement of the BM becomes very slow. The movement of the fluid amplifies the BM movement. Furthermore, the movement of the fluid can strengthen the movement of the OHCs and the shear movement of the stereocilia, especially in the vicinity of the characteristic frequency at which the amplification effect reaches a peak. Nevertheless, a pressure gradient in the fluid affects the BM movement.

关 键 词:tunnel of Corti (TC) organ of Corti (OC) frequency response fluidpressure 

分 类 号:R318.01[医药卫生—生物医学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象