同阶双轨道连通图的超圈边连通性  

Super cyclically edge connected graphs with two orbits of the same size

在线阅读下载全文

作  者:姜海宁[1] 

机构地区:[1]厦门大学数学科学学院,福建厦门361005

出  处:《上海大学学报(自然科学版)》2017年第2期252-256,共5页Journal of Shanghai University:Natural Science Edition

基  金:国家自然科学基金资助项目(11471273)

摘  要:对于图G,如果G-F是不连通的且至少有两个分支含有圈,则称F为图G的圈边割.如果图G有圈边割,则称其为圈可分的.最小圈边割的基数叫作圈边连通度.如果去除任何一个最小圈边割,总存在一分支为最小圈,则图G为超圈边连通的.设G=(G_1,G_2,(V_1,V_2))为双轨道图,最小度δ(G)≥4,围长g(G)≥6且|V_1|=|V_2|.假设G_i是k_i-正则的,k_1≤k_2且G_1包含一个长度为g的圈,则G是超圈边连通的.For a graph G, an edge set F is a cyclic edge-cut if (G - F) is disconnected and at least two of its components contain cycles. If G has a cyclic edge-cut, it is said to be cyclically separable. The cyclic edge-connectivity is cardinality of a minimum cyclic edgecut of G. A graph is super cyclically edge-connected if removal of any minimum cyclic edge-cut makes a component a shortest cycle. Let G = (G1,G2, (V1,V2)) be a doubleorbit graph with minimum degree δ(G) ≥ 4, girth g ≥ 6 and |V1| = |V2|. Suppose Gi is ki-regular, kl ≤ k2 and G1 contains a cycle of length g, then G is super cyclically edge connected.

关 键 词:圈边割 圈边连通度 超圈边连通性 轨道 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象