检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]安徽工程大学电气工程学院,安徽芜湖241000
出 处:《安徽工程大学学报》2017年第1期63-67,共5页Journal of Anhui Polytechnic University
基 金:安徽省高等教育提升计划基金资助项目(TSKJ2014B05)
摘 要:天线结构日趋复杂,设计自由度不断提高,经典优化算法需要对大量的参数组合进行仿真试探后才能得到最优结果,使得天线的高维优化设计效率普遍较低.针对这一问题,将代理模型与进化算法相结合,提出基于Kriging模型的差分进化算法(Kriging based Differential Evolution Algorithm,KDEA).算法以Kriging模型部分代替电磁仿真,预测差分进化后个体的响应和不确定性;以进化前后种群的构成和筛选来调节搜索的广度和深度.结果显示,利用此方法优化一个9变量双层贴片天线的阻抗带宽及主瓣增益,相比同类优化算法,所需电磁仿真次数可以减少70%以上.For novel antennas with complex structure and high degrees of freedom,the classical optimization methods require numerous simulation trials of different parameter combinations,which leads to a low efficiency in solving high dimensional antenna design and optimization problems.To address this issue,kriging based differential evolution algorithm(KDEA),which combines evolution algorithm with surrogate model,is proposed.By partly substituting electromagnetic(EM)solver,kriging model predicts the responses and uncertainties of each individual after differential evolution.The exploration and exploitation of the search space can be adjusted by the constitution and prescreening of the population before and after evolution.This algorithm is applied to optimize the impedance bandwidth and the mainbeam gain of a stacked patch antenna with 9variables.Compared with the other optimization methods,the number needed for EM simulation reduced at least by 70%.
分 类 号:TN820[电子电信—信息与通信工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15