检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东华理工大学测绘工程学院,江西南昌330013
出 处:《东华理工大学学报(自然科学版)》2017年第1期79-83,共5页Journal of East China University of Technology(Natural Science)
基 金:国家自然科学基金(41161069)
摘 要:叶面积指数是描述植物生长状况的重要指标之一,利用Hyperion数据计算NDVI,SRI,EVI,RENDVI,WBI 5种植被指数。以梅江流域周边植被为研究区域,结合该地区30个样本点的实测LAI数据,建立5种植被指数与LAI的多种回归模型并检验各模型的精度。实验结果表明,利用上述5种植被指数与叶面积指数所建立的线性和非线性模型中,一元线性、二次多项式和三次多项式回归模型中RENDVI的拟合效果最佳,并且随着模型变量次数的增加拟合效果也呈递增趋势。指数模型中拟合效果最佳的为EVI,WBI在对数模型中有更好的拟合效果。将5种植被指数作为自变量的多元线性回归模型拟合效果明显优于其它所有模型。Leaf area index is to describe one of the used to calculate the NDVI SRI EVI RENDVI WBI. important indexes of plant growth condition, Hyperion data is Vegetation surrounding the meijiang river basin as study area, combined with 30 sample points in the region of the measured LAI data, set up five vegetation index and LAI are multiple regression model and test the accuracy of the model. The experimental results show that the use of the a- bove five vegetation index and leaf area index are established by the linear and nonlinear model, a linear quadratic polynomial and cubic polynomial regression model RENDVI best fitting effect, with the increase of variable fre- quency model fitting effect also showed a trend of increasing. Index in the model best fitting effect for EVI, WBI in logarithm model has a better fitting effect is 5 vegetation index as the independent variables are the multivariate linear regression model fitting effect is superior to all other models.
分 类 号:TP79[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30