机构地区:[1]Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta T6G 2V4, Canada [2]Biomass Conversion & Processing Technologies InnoTech, Alberta Innovates-Technology Futures, Edmonton, Alberta T6N 1E4, Canada [3]nanoFAB, University of Alberta, Edmonton, Alberta T6G 2V4, Canada [4]National Research Council of Canada, 100 Sussex Drive, Ottawa, Ontario K1A OR6, Canada
出 处:《Nano Research》2017年第5期1847-1860,共14页纳米研究(英文版)
摘 要:Nanocellulose is a sustainable and eco-friendly nanomaterial derived from renewable biomass. In this study, we utilized the structural advantages of two types of nanocellulose and fabricated freestanding carbonized hybrid nanocellulose films as electrode materials for supercapacitors. The long cellulose nanofibrils (CNFs) formed a macroporous framework, and the short cellulose nanocrystals were assembled around the CNF framework and generated micro/mesopores. This two-level hierarchical porous structure was successfully preserved during carbonization because of a thin atomic layer deposited (ALD) A1203 conformal coating, which effectively prevented the aggregation of nanocellulose. These carbonized, partially graphitized nanocellulose fibers were interconnected, forming an integrated and highly conductive network with a large specific surface area of 1,244 m2·g-1. The two-level hierarchical porous structure facilitated fast ion transport in the film. When tested as an electrode material with a high mass loading of 4 mg·cm-2 for supercapacitors, the hierarchical porous carbon film derived from hybrid nanocellulose exhibited a specific capacitance of 170 F·g-1 and extraordinary performance at high current densities. Even at a very high current of 50 A-g-l, it retained 65% of its original specific capacitance, which makes it a promising electrode material for high-power applications.Nanocellulose is a sustainable and eco-friendly nanomaterial derived from renewable biomass. In this study, we utilized the structural advantages of two types of nanocellulose and fabricated freestanding carbonized hybrid nanocellulose films as electrode materials for supercapacitors. The long cellulose nanofibrils (CNFs) formed a macroporous framework, and the short cellulose nanocrystals were assembled around the CNF framework and generated micro/mesopores. This two-level hierarchical porous structure was successfully preserved during carbonization because of a thin atomic layer deposited (ALD) A1203 conformal coating, which effectively prevented the aggregation of nanocellulose. These carbonized, partially graphitized nanocellulose fibers were interconnected, forming an integrated and highly conductive network with a large specific surface area of 1,244 m2·g-1. The two-level hierarchical porous structure facilitated fast ion transport in the film. When tested as an electrode material with a high mass loading of 4 mg·cm-2 for supercapacitors, the hierarchical porous carbon film derived from hybrid nanocellulose exhibited a specific capacitance of 170 F·g-1 and extraordinary performance at high current densities. Even at a very high current of 50 A-g-l, it retained 65% of its original specific capacitance, which makes it a promising electrode material for high-power applications.
关 键 词:NANOCELLULOSE SUPERCAPACITORS hierarchical structure atomic layer deposition(ALD) integrated structure
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...