检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:吴道祥[1,2] 周杰[1,2] 马鹏程[1,2] 赵天生[1,2]
机构地区:[1]重庆大学材料科学与工程学院,重庆400044 [2]重庆大学材料成形研究所,重庆400044
出 处:《中南大学学报(自然科学版)》2017年第3期601-607,共7页Journal of Central South University:Science and Technology
基 金:国家自然科学基金资助项目(51275543);中国科技部重大专项项目(2012ZX04010-081);重庆市科委应用开发(重大)项目(cstc2014yykfC70003)~~
摘 要:针对某铝合金航空锻件热锻成形中出现的充填不满、流线穿流、变形不均匀等缺陷问题,以x_1(坯料高宽比)、x_2(坯料温度)、x_3(成形速度)、x_4(摩擦因数)为优化变量,采用响应面法结合有限元数值模拟对锻件成形多目标工艺参数优化进行研究。根据试验设计结果分别建立3个目标函数的二阶分析模型,得到的回归模型预测精度较高,能较好地描述3个目标函数关于设计变量的响应。通过分析建立的响应面3D和2D优化图,采用MATLAB软件对试验参数进行进一步的优化。研究结果表明:锻件成形最优工艺参数如下:x_1为1.3、x_2为450℃、x_3为6 mm/s、x_4为0.3。将优化后的最优工艺参数应用到后续的实际生产验证,锻件成形缺陷得到有效消除,证明该优化方法有效。Due to the defects such as under-filling, partial draining and uneven deformation appearing in precision forming process of aluminum alloy aviation components, the height-width ratio of the billet(x1), billet temperature(x2), punch velocity(x3) and friction coefficient(x4) were selected to the optimization variables. Multi-objective optimization of hot die forging process parameters were studied using the response surface method(RSM) combined with finite element method(FEM). Second-order analysis models were established to describe the response of the three functions about optimization objectives and the results illustrated that the regression models were fine in prediction accuracy. By analyzing the 3D and 2D optimization graphs, the software of MATLAB was used to further optimized experiment parameters. The results show that the optimal process parameters are as follows: x1 is 1.3, x2 is 450 ℃, x3 is 6 mm/s and x4 is 0.3. Through the next actual production verification, the optimal process parameters optimized can effectively eliminate the dissatisfaction of the components.
关 键 词:多目标优化 响应面法 筋板类锻件 热模锻 数值模拟
分 类 号:TG316[金属学及工艺—金属压力加工]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:13.59.173.30