Gap-plasmon of Fe3O4@Ag Core-shell Nanostructures for Highly Enhanced Fluorescence Detection of Rhodamine B  被引量:4

Gap-plasmon of Fe_3O_4@Ag Core-shell Nanostructures for Highly Enhanced Fluorescence Detection of Rhodamine B

在线阅读下载全文

作  者:王运佳 俎喜红 易国斌 LUO Hongsheng HUANG Hailiang 

机构地区:[1]School of Chemical Engineering and Light Industry,Guangdong University of Technology

出  处:《Journal of Wuhan University of Technology(Materials Science)》2017年第2期264-271,共8页武汉理工大学学报(材料科学英文版)

基  金:Funded by the National Natural Science Foundation of China(NSFC)(Nos.51273048 and 51203025);the Natural Science Foundation of Guangdong Province(No.S2012040007725)

摘  要:A novel gap-plasmon of Fe3O4@Ag core-shell nanoparticles for surface enhanced fluorescence detection of Rhodamine B(RB) was developed. Fe3O4@Ag core-shell nanostructures with Ag shell and Fe3O4 core were synthetized by self-assembled method with the assistance of 3-mercaptopropyl trimethoxy silane(MPTS). To study the RB fluorescence enhanced by gap-plasmon, the fluorescence properties of RB on the substrates with different nanogap densities were systematically investigated, and the results showed that the fluorescence intensity of RB on Fe3O4@Ag core-shell NPs substrate was much stronger than that on bare glass substrate, and the fluorescence intensity was further improved by using multilayer Fe3O4@Ag core-shell NPs substrate which had higher nanogap density. Different from the mechanism that is based on the maximum overlap of the surface plasmon resonance(SPR) band and emission band, the mechanism of the fluorescence enhancement in our work is based on the localized surface plasmon(LSP) and the gap plasmon near-field coupling with the Fe3O4@Ag core-shell NPs. Besides, the detection limit obtained was as low as 1×10^(-7) mol/L, and the Fe3O4@Ag core-shell NPs substrate had high selectivity for RB fluorophores. It was demonstrated that the Fe3O4@Ag core-shell NPs substrate had activity, good stability, and selectivity for fluorescence detection of RB. And the detection of RB by the surface plasmon enhanced fluorescence was more convenient and rapid than the traditional detection methods in previous works.A novel gap-plasmon of Fe3O4@Ag core-shell nanoparticles for surface enhanced fluorescence detection of Rhodamine B(RB) was developed. Fe3O4@Ag core-shell nanostructures with Ag shell and Fe3O4 core were synthetized by self-assembled method with the assistance of 3-mercaptopropyl trimethoxy silane(MPTS). To study the RB fluorescence enhanced by gap-plasmon, the fluorescence properties of RB on the substrates with different nanogap densities were systematically investigated, and the results showed that the fluorescence intensity of RB on Fe3O4@Ag core-shell NPs substrate was much stronger than that on bare glass substrate, and the fluorescence intensity was further improved by using multilayer Fe3O4@Ag core-shell NPs substrate which had higher nanogap density. Different from the mechanism that is based on the maximum overlap of the surface plasmon resonance(SPR) band and emission band, the mechanism of the fluorescence enhancement in our work is based on the localized surface plasmon(LSP) and the gap plasmon near-field coupling with the Fe3O4@Ag core-shell NPs. Besides, the detection limit obtained was as low as 1×10^(-7) mol/L, and the Fe3O4@Ag core-shell NPs substrate had high selectivity for RB fluorophores. It was demonstrated that the Fe3O4@Ag core-shell NPs substrate had activity, good stability, and selectivity for fluorescence detection of RB. And the detection of RB by the surface plasmon enhanced fluorescence was more convenient and rapid than the traditional detection methods in previous works.

关 键 词:gap-plasmon self-assembled Fe3O4@Ag nanoparticles core-shell fluorescence enhancement 

分 类 号:O657.3[理学—分析化学] TB383.1[理学—化学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象