基于免疫算法改进的反向传播神经元网络矿井水害水源识别研究  被引量:3

Research on Relative Technologies of Automatic Recognition of Water Sources Based on Back Propagation Neural Network Improved by Immune Algorithm

在线阅读下载全文

作  者:阿淑芳[1] 刘宁宁[1] 余生晨[2] 石强 

机构地区:[1]邢台学院,河北邢台054000 [2]华北科技学院计算机学院,北京东燕郊101601 [3]高河能源有限公司,山西长治047100

出  处:《华北科技学院学报》2017年第1期34-39,共6页Journal of North China Institute of Science and Technology

基  金:国家自然科学基金(51274100);中央高校基本科研业务费资助(JSJ1207B;3142015103)

摘  要:为了提高识别矿山水害水源(即,判定水的类型)的正确率,利用免疫算法设计并优化了反向传播神经元网络(BPNN)的结构并求得BPNN的各层权系数和阈值的初值,用该初值训练BPNN,获得最佳的BPNN各层的权系数(权重)和阈值,使其适合识别矿山水害水源。用训练好的BPNN识别待判定的水源是哪一种类型的水源,判定水源的危害程度。实验和潞安集团所属煤矿区的矿井和钻孔水样检验结果说明用该方法是有效可行的,识别矿井水的水源的准确率可达到93%。In order to improve the recognition correct rate of flood water( that is, recognition correct rate of type of water), the structure and the weight coefficient (weight) and threshold of each layer of back -propagation neural network(BPNN) are designed and optimized with Immune Algorithm. The BPNN is trained, to get the optimal weight coefficient (weight) and threshold of each layer of BPNN. Finally, the trained BPNN is used to identify the type of water source to be judged, and the degree of water hazard is determined. Lu'an Group coal mine and drilling water and experimental results show that the method is feasible and efficient, and the detec- tion right rate of flood waters was above 93 %.

关 键 词:水源识别 矿井突水 反向传播神经元网络 免疫算法 

分 类 号:TD745.21[矿业工程—矿井通风与安全]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象