检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:王闵[1,2] 刘复飞[2] 周贤[2] 戴玉堂[2] 杨明红[2]
机构地区:[1]武汉纺织大学电子与电气工程学院,武汉430200 [2]武汉理工大学光纤传感技术国家工程实验室,武汉430070
出 处:《物理学报》2017年第7期19-27,共9页Acta Physica Sinica
基 金:国家自然科学基金(批准号:61290311;61505150;61575151);湖北省自然科学基金(批准号:2014CFC1138;2015CFA016)资助的课题~~
摘 要:将功能敏感材料与光纤在物理层面进行有机融合,充分发挥光纤传感器在结构集成、材料集成等方面的优势,将有望发展新型的光纤传感器件和系统.本文综述了飞秒激光光纤微加工技术分别在标准的单模光纤和光纤光栅上制备微结构,再结合敏感材料制备技术,实现在物理层面上光纤传感器材料和结构的集成和融合,探索实现新型高性能的光纤传感新技术.Integration of novel functional material with fiber optic components is one of the new trends in the field of novel sensing technologies. The combination of fiber optics with functional materials offers great potential for realizing the novel sensors. Typically in optical fibre sensing technology, fibre itself acts as sensing element and also transmitting element, such as fiber Bragg grating(FBG), Brillouin or Raman optical time domain reflectometer. However such sensing components can only detect limited physical parameters such as temperature or strain based on the principle of characteristic wavelength drifts. While the idea of optical fiber sensing technology with functional materials is quite different from that of the traditional technology, functional materials can be employed as sensing components, therefore many parameters, including chemical or biological parameters, can be detected, depending on the designs of different sensing films. When compared with the common fiber sensing technologies such as FBG and optical time domain reflectometer, fiber optic sensors based on functional materials show advantages in the diversity of measurement parameters.However, functional materials can be realized by many techniques including e-beam evaporation, magnetron sputtering,spin-coating, electro-chemical plating, etc. The mechanical stability of tiny optical fibers is still problematic, which could be a challenge to industrial applications.In this work, a femtosecond laser fabricated fiber inline micro Mach-Zehnder interferometer with deposited palladium film for hydrogen sensing is presented. Simulation results show that the transmission spectrum of the interferometer is critically dependent on the microcavity length and the refractive index of Pd film, and a short microcavity length corresponds to a high sensitivity. The experimental results obtained in a wavelength region of 1200–1400 nm, and in a hydrogen concentration range of 0–16%, accord well with those of the simulations. The developed system has h
分 类 号:TP212[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.188