检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]许昌学院土木工程学院,河南许昌461000 [2]武汉大学土木建筑工程学院,湖北武汉430072
出 处:《数学的实践与认识》2017年第7期57-62,共6页Mathematics in Practice and Theory
摘 要:工程项目评标实质是多目标决策问题,为优先出合适的投标单位,建立灰色Euclid理论工程项目评标决策模型.首先,运用层次分析法(AHP)与信息熵法分别确定主客观权重.然后利用博弈集结模型对指标体系进行组合赋权,得到综合权重.最后,结合工程项目评标实例运用灰色Euclid理论评标模型进行评标决策.结果表明,运用博弈集结组合赋权和灰色Euclid理论模型选出投标单位D为最优方案,与实际评标一致,验证了模型的可操作性和适用性.The essence of project evaluation is the multi objective decision making problem,in order to give priority to the proper bidding units,a decision making model of grey Euclid theory project evaluation is set up.At first,using the analytic hierarchy process(AHP) and the information entropy method to determine the subjective and objective weight.Then,the combination weighting of the index system is obtained by using the game model to get the comprehensive weight.Finally,combining with the example of project evaluation,the grey Euclid theory is used to make the decision of the evaluation model.The results show that the bidding unit D is selected as the optimal scheme by the combination of the game theory and the grey Euclid model,which is consistent with the actual bid evaluation,which verifies the operability and applicability of the model.
关 键 词:工程项目评标 多目标决策 博弈集结模型 灰色Euclid理论
分 类 号:TU723.2[建筑科学—建筑技术科学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145