Convergence error estimates of the Crank-Nicolson scheme for solving decoupled FBSDEs  被引量:1

Convergence error estimates of the Crank-Nicolson scheme for solving decoupled FBSDEs

在线阅读下载全文

作  者:LI Yang YANG Jie ZHAO WeiDong 

机构地区:[1]College of Science,University of Shanghai for Science and Technology [2]School of Mathematics,Shandong University

出  处:《Science China Mathematics》2017年第5期923-948,共26页中国科学:数学(英文版)

基  金:supported by Shanghai University Young Teacher Training Program(Grant No.slg14032);National Natural Science Foundations of China(Grant Nos.11501366 and 11571206)

摘  要:In this work, we theoretically analyze the convergence error estimates of the Crank-Nicolson (C-N) scheme for solving decoupled FBSDEs. Based on the Taylor and ItS-Taylor expansions, the Malliavin calculus theory (e.g., the multiple Malliavin integration-by-parts formula), and our new truncation error cancelation techniques, we rigorously prove that the strong convergence rate of the C-N scheme is of second order for solving decoupled FBSDEs, which fills the gap between the second-order numerical and theoretical analysis of the C-N scheme.In this work, we theoretically analyze the convergence error estimates of the Crank-Nicolson(C-N) scheme for solving decoupled FBSDEs. Based on the Taylor and It-Taylor expansions, the Malliavin calculus theory(e.g.,the multiple Malliavin integration-by-parts formula), and our new truncation error cancelation techniques, we rigorously prove that the strong convergence rate of the C-N scheme is of second order for solving decoupled FBSDEs, which fills the gap between the second-order numerical and theoretical analysis of the C-N scheme.

关 键 词:convergence analysis Crank-Nicolson scheme decoupled forward backward stochastic differentialequations Malliavin calculus trapezoidal rule 

分 类 号:O211.63[理学—概率论与数理统计] O241.82[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象