检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:LI Yang YANG Jie ZHAO WeiDong
机构地区:[1]College of Science,University of Shanghai for Science and Technology [2]School of Mathematics,Shandong University
出 处:《Science China Mathematics》2017年第5期923-948,共26页中国科学:数学(英文版)
基 金:supported by Shanghai University Young Teacher Training Program(Grant No.slg14032);National Natural Science Foundations of China(Grant Nos.11501366 and 11571206)
摘 要:In this work, we theoretically analyze the convergence error estimates of the Crank-Nicolson (C-N) scheme for solving decoupled FBSDEs. Based on the Taylor and ItS-Taylor expansions, the Malliavin calculus theory (e.g., the multiple Malliavin integration-by-parts formula), and our new truncation error cancelation techniques, we rigorously prove that the strong convergence rate of the C-N scheme is of second order for solving decoupled FBSDEs, which fills the gap between the second-order numerical and theoretical analysis of the C-N scheme.In this work, we theoretically analyze the convergence error estimates of the Crank-Nicolson(C-N) scheme for solving decoupled FBSDEs. Based on the Taylor and It-Taylor expansions, the Malliavin calculus theory(e.g.,the multiple Malliavin integration-by-parts formula), and our new truncation error cancelation techniques, we rigorously prove that the strong convergence rate of the C-N scheme is of second order for solving decoupled FBSDEs, which fills the gap between the second-order numerical and theoretical analysis of the C-N scheme.
关 键 词:convergence analysis Crank-Nicolson scheme decoupled forward backward stochastic differentialequations Malliavin calculus trapezoidal rule
分 类 号:O211.63[理学—概率论与数理统计] O241.82[理学—数学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117