检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]南京理工大学计算机科学与工程学院,南京200094 [2]南京交通职业技术学院-长安福特汽车有限公司联合实验室,南京211188
出 处:《汽车工程》2017年第4期462-470,485,共10页Automotive Engineering
基 金:国家自然科学基金(61305134);博士点基金(20133219120035)资助
摘 要:本文中根据汽油机空燃比故障的特点,提出了一种基于数据流趋势异常和相关性分析的故障实时检测方法。为了提高准确率和运行效率,通过衰减和时间判断法在误差累积和算法CUSUM基础上进行改进,对数据流之间的相关性进行快速估计,使整个系统能运行在对资源比较敏感的车载平台上。在长安福特发动机上的实验结果表明,相比传统的基于SVM和神经网络的故障检测方法,该方法能以较低的资源消耗获得更好的故障检测效果。According to the features of air fuel ratio fault in gasoline engine,a real-time fault detection method based on the abnormality of data flow trend and correlation analysis is proposed in this paper. For enhancing accuracy and operation efficiency,modifications are made based on the algorithm of cumulative sum of error,with rapid estimation on the correlation between data flows,to enable the whole system operates on on-board platform relatively sensitive to resources. The results of test on the engine of Chang-an vehicle show that compared with traditional fault detection method based on support vector machine and neural network,the method proposed can obtain better results of fault detection with lower resource consumption.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229