检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:宋雨晴[1] 王晓平[1,2,3]
机构地区:[1]中国科学技术大学物理系,合肥230026 [2]中国科学技术大学微尺度物质科学国家实验室,合肥230026 [3]中国科学技术大学量子信息和量子物理协同创新中心,合肥230026
出 处:《Chinese Journal of Chemical Physics》2017年第2期193-199,I0002,共8页化学物理学报(英文)
摘 要:We studied the oxidation resistance of graphene-coated Cu surface and its layer dependence by directly growing monolayer graphene with different multilayer structures coexisted, di- minishing the influence induced by residue and transfer technology. It is found that the Cu surface coated with the monolayer graphene demonstrate tremendous difference in oxidation pattern and oxidation rate, compared to that coated with the bilayer graphene, which is considered to be originated from the strain-induced linear oxidation channel in monolayer graphene and the intersection of easily-oxidized directions in each layer of bilayer graphene, respectively. We reveal that the defects on the graphene basal plane but not the boundaries are the main oxidation channel for Cu surface under graphene protection. Our finding indicates that compared to putting forth efforts to improve the quality of monolayer graphene by reducing defects, depositing multilayer graphene directly on metal is a simple and effective way to enhance the oxidation resistance of graphene-coated metals.
关 键 词:GRAPHENE Chemical vapor deposition Oxidation resistance DEFECT
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3