检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]河海大学计算机与信息学院,江苏南京210098
出 处:《计算机技术与发展》2017年第5期69-72,76,共5页Computer Technology and Development
基 金:江苏省重点研发计划项目(BE2015707);江苏省水利科技项目资金资助项目(2012034)
摘 要:针对传统火灾检测存在的对周围环境要求比较高,且研究对象多数属于室内或者商业设施等现象,提出了基于滑动窗口图像特征提取的多特征融合和SVM相结合的秸秆焚烧火灾检测算法。首先在YCbCr空间模型下使用Otsu(大津算法)对火焰图像进行前景检测,再对所检测到的前景使用颜色判别方法,得到候选火焰区域,然后使用滑动窗口在这些区域上进行移动,在每一个窗口内提取HOG特征、灰度共生矩阵特征、颜色矩特征,将这些特征分别送入SVM训练得到不同的分类器进行秸秆焚烧事件检测。最后根据投票方法将三种特征进行融合,最终检测出是否发生火灾。实验结果表明,该算法实现简单,识别率高,可达到86.67%。且由于算法基于火灾的静态特征,更能体现火焰的固有图像特征,与其他类型的火焰检测相比,适用性更强。The traditional fire detection system has higher requirements of the surrounding environment, and research objects belongs to in- door or commercial facilities mostly. In order to solve the problem, a fire detection algorithm based on multi-feature fusion of image feature extraction of sliding window and the SVM classifier is proposed. First, in the YCbCr color space model, Otsu is used to detect the foreground from the flame image and the foreground is inspected by the color feature to obtain the fire candidate regions. Then three kinds of flame features including HOG,gray level co-occurrence matrix and color moment are extracted by using the sliding widow moved on the fire candidate regions,which are put into the SVM classifier to classify the window whether there is a fire. The final result based on the method of voting is gained. The experimental results show that the algorithm is simple and has higher recognition rate ,more than 86. 67%. Because it is based on the static features of the fire ,it shows inherent image characteristics of fire. Compared with other fire detection algorithms, it has wider application range.
分 类 号:TP181[自动化与计算机技术—控制理论与控制工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.117.127.127