机构地区:[1]Department of Engineering Mechanics,State key Laboratory of Structural Analysis of Industrial Equipment,Dalian University [2]Tianjin Branch,CNOOC
出 处:《China Ocean Engineering》2017年第2期230-237,共8页中国海洋工程(英文版)
基 金:financially supported by the National Natural Science Foundation of China(Grant No.15572072);the National Key Basic Research and Development Program(Grant Nos.2014CB046803 and 2016ZX05028-002-005)
摘 要:By focusing on the vulnerability of the structure of marine equipments, together with considering the randomness of meta-ocean load in statistics, a kind of analytical method of fatigue characteristics of marine structure based on full- scale and actual measurement of prototype is proposed. On the basis of short-term field measurement results of structural response, research is carried out on the fatigue analysis of hinge joints at the upper part of the Soft Yoke single point Mooring System (SYMS) by simultaneously monitoring the environmental load and considering the design criteria of offshore structure. Through analysis of finite element modeling, the time-histories of typical stress response are obtained, and then the assessment of fatigue damage at key hinge joints is conducted. The simulation results indicate that the proposed method can accurately analyze the fatigue damage of offshore engineering structure caused by the effect of wave load. The present analytical method of fatigue characteristics can be extended on other offshore engineering structures subjected to meta-ocean load.By focusing on the vulnerability of the structure of marine equipments, together with considering the randomness of meta-ocean load in statistics, a kind of analytical method of fatigue characteristics of marine structure based on full- scale and actual measurement of prototype is proposed. On the basis of short-term field measurement results of structural response, research is carried out on the fatigue analysis of hinge joints at the upper part of the Soft Yoke single point Mooring System (SYMS) by simultaneously monitoring the environmental load and considering the design criteria of offshore structure. Through analysis of finite element modeling, the time-histories of typical stress response are obtained, and then the assessment of fatigue damage at key hinge joints is conducted. The simulation results indicate that the proposed method can accurately analyze the fatigue damage of offshore engineering structure caused by the effect of wave load. The present analytical method of fatigue characteristics can be extended on other offshore engineering structures subjected to meta-ocean load.
关 键 词:fatigue characteristics full scale measurement finite element method SYMS
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...