基于DBSCAN子空间匹配的蜂窝网室内指纹定位算法  被引量:7

DBSCAN Based Subspace Matching for Indoor Cellular Network Fingerprint Positioning Algorithm

在线阅读下载全文

作  者:田增山[1] 王向勇[1] 周牧[1] 李玲霞[1] 

机构地区:[1]重庆邮电大学移动通信重点实验室,重庆400065

出  处:《电子与信息学报》2017年第5期1157-1163,共7页Journal of Electronics & Information Technology

基  金:国家自然科学基金(61301126);长江学者和创新团队发展计划(IRT1299);重庆市基础与前沿研究计划(cstc2013jcyjA 40041;cstc2015jcyj BX0065);重庆邮电大学青年科学研究项目(A2013-31)~~

摘  要:针对无线信道动态衰落特性引起的蜂窝网室内定位误差较大的问题,该文提出基于密度的空间聚类(Density Based Spatial Clustering of Applications with Noise,DBSCAN)子空间匹配算法,有效剔除大误差点,提高定位精度。首先通过划分信号空间,构建多个子空间,在子空间中利用加权K近邻匹配算法(Weighted K Nearest Neighbor,WKNN)估计出目标位置;然后利用DBSCAN对估计位置进行聚类以剔除异常点;最后结合概率模型确定最终估计位置。实验结果表明,基于DBSCAN的子空间匹配算法能有效剔除大误差点,提高蜂窝网室内定位系统的整体性能。For the sake of reducing the indoor localization errors caused by dynamic signal fading in cellular network, this paper propose a novel Density-Based Spatial Clustering of Applications with Noise (DBSCAN) based subspace matching algorithm for indoor localization, which can improve the localization accuracy by eliminating the location with large errors. Specifically, the signal space is firstly divided into several subspaces, where a position estimation can be obtained respectively using the Weighted K Nearest Neighbors (WKNN) approach. Then, DBSCAN is applied to the position coordinates obtained from each subspace which eliminates the outliers. Finally, the location is estimated based on probability analysis. Experimental results show that the proposed approach can improve the location accuracy by eliminating the location with large errors.

关 键 词:室内定位 蜂窝网 DBSCAN 子空间匹配 

分 类 号:TN929.53[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象