检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:何世钧[1] 张婷[1] 何海洋[2] 程小龙[1] 周媛媛[1]
机构地区:[1]上海海洋大学信息学院,上海201306 [2]华东理工大学信息科学与工程学院,上海200237
出 处:《计量学报》2017年第3期319-323,共5页Acta Metrologica Sinica
基 金:上海市科委科研计划资助项目(10510502800)
摘 要:基于并联模型且考虑了不同介质满场分布时电容值对测量电容值的影响,提出了一种多权值电容归一化方法,所建模型不仅适用于两相流还适用于两相流以上的多相流。实验结果表明:在包含2种以上介质的多相流图像重建中,使用多权值模型的图像重建精度的均方差为0.0044,明显优于并联模型的0.0322,因此,多权值模型能够提高图像重建算法精度。分析重建图像发现,该模型还能提高物场中心处的灵敏度,使得物场中心处物体的成像误差减小,从而提高重建图像质量。A new multi-weights normalization method based on the parallel normalization model is presented, and it considered the influences of the capacitances when the sensor is full of deference permittivity materials for the measured capacitance. The multi-weights model is suitable for two or more phase flow. The experimental results show that the RMSE of the image reconstruction accuracy based on the multi-weights model is 0.0044, better than that of parallel normalization model which is 0.0322 when more than two kinds of medium in the image reconstruction, so the multi-weights model can improve the image reconstruction accuracy effectively. Through the analysis of the reconstruction image show that it also can improve the sensitivity of the center field and reduce the imaging errors, which greatly improving the quality of reconstruction.
关 键 词:计量学 多相流 电容层析成像 归一化模型 图像重建
分 类 号:TB937[一般工业技术—计量学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.209