柱面全景图像拼接方法的仿真分析  被引量:10

Simulation Analysis of Cylindrical Panoramic Image Mosaic

在线阅读下载全文

作  者:朱宁宁[1] 

机构地区:[1]武汉大学遥感信息工程学院,湖北武汉430079

出  处:《测绘学报》2017年第4期487-497,共11页Acta Geodaetica et Cartographica Sinica

摘  要:随着虚拟现实(VR)技术的兴起,全景图像得到了更为广泛的应用,目前多通过求解单应矩阵对图像进行变换,由多相机拼接获取全景图像,但该方法会破坏成像中的共线条件,使拼接后的全景图像难以精确进行摄影测量中的三维重建等工作。本文提出了一种柱面全景图像拼接方法并对其进行仿真分析,该方法基于摄影测量共线方程,设定拼接相机的数目、成像焦距、成像位置和成像姿态,模拟多拼相机的成图过程,构建从三维点云到二维图像的柱面成像方程,通过成像方程不仅可以实现各图像的全景拼接,而且可对影响全景图像拼接精度的各参数进行定量分析,试验结果表明:1本文提出的柱面成像方程和全景拼接方法可用于不同数目相机及倾斜成像下的全景拼接;2利用成像方程推导的误差方程可知,全景图像拼接的精度受焦距误差、中心误差和旋角误差的影响,其中,焦距误差可通过图像重采样的方法校正,中心误差与摄影物距密切相关,而旋角误差主要受拼接相机数目的影响。With the rise of virtual reality (VR) technology, panoramic images are used more widely, which obtained by multi-camera stitching and take advantage of homography matrix and image transformation, however, this method will destroy the collinear condition, make it's difficult to 3D reconstruction and other work. This paper proposes a new method for cylindrical panoramic image mosaic, which set the number of mosaic camera, imaging focal length, imaging position and imaging attitude, simulate the mapping process of multi-camera and construct cylindrical imaging equation from 3D points to 2D image based on photogrammetric collinearity equations. This cylindrical imaging equation can not only be used for panoramic stitching, but also be used for precision analysis, test results show: ①this method can be used for panoramic stitching under the condition of multi-camera and incline imaging; ②the accuracy of panoramic stitching is affected by 3 kinds of parameter errors including focus, displacement and rotation angle, in which focus error can be corrected by image resampling, displacement error is closely related to object distance and rotation angle error is affected mainly by the number of cameras.

关 键 词:全景图像拼接 柱面投影 成像方程 适用性分析 精度分析 

分 类 号:P237[天文地球—摄影测量与遥感]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象