检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:WU YanQiu
机构地区:[1]College of Mathematics & Statistics, Chongqing Three Gorges University, Chongqing 404100, China
出 处:《Science China(Technological Sciences)》2017年第5期692-700,共9页中国科学(技术科学英文版)
基 金:supported by the Scientific and Technological Research Program of Chongqing Municipal Education Commission(Grant No.KJ1710251)
摘 要:In this paper, the endoreversible Otto cycle is analyzed with the entropy generation minimization and the entransy theory. The output power and the heat-work conversion efficiency are taken as the optimization objectives, and the relationships of the output power, the heat-work conversion efficiency, the entropy generation rate, the entropy generation numbers, the entransy loss rate, the entransy loss coefficient, the entransy dissipation rate and the entransy variation rate associated with work are discussed. The applicability of the entropy generation minimization and the entransy theory to the analyses is also analyzed. It is found that smaller entropy generation rate does not always lead to larger output power, while smaller entropy generation numbers do not always lead to larger heat-work conversion efficiency, either. In our calculations, both larger entransy loss rate and larger entransy variation rate associated with work correspond to larger output power, while larger entransy loss coefficient results in larger heat-work conversion efficiency. It is also found that the concept of entransy dissipation is not always suitable for the analyses because it was developed for heat transfer.
关 键 词:entropy generation minimization entransy finite time thermodynamics endoreversible Otto cycle applied mathematics
分 类 号:TK12[动力工程及工程热物理—工程热物理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.143