Synthesis and thermometric properties of Yb^3+-Er^3+ co-doped K2GdF5 up-conversion phosphors  被引量:2

Synthesis and thermometric properties of Yb^(3+)-Er^(3+) co-doped K_2GdF_5 up-conversion phosphors

在线阅读下载全文

作  者:迟逢逢 胡芳芳 韦先涛 陈永虎 尹民 

机构地区:[1]Key Laboratory of Strongly-Coupled Quantum Matter Physics, Chinese Academy of Sciences, School of Physical Sciences, University of Science and Technology of China, Hefbi 230026, China

出  处:《Journal of Rare Earths》2017年第5期436-440,共5页稀土学报(英文版)

基  金:Project supported by the National Key Basic Research Program of China(2013CB921800);the National Natural Science Foundation of China(11274299,11374291,11574298,11404321);Anhui Provincial Natural Science Foundation(1308085QE75)

摘  要:Yb^3+-Er^3+ co-doped K2GdF5 up-conversion phosphor was successfully synthesized by a solid-state reaction method. The phase purity and structure of the sample were characterized by powder X-ray diffraction. The sample emitted orange light at room temperature and its up-conversion spectra at different temperatures were recorded under the excitation of a 980 nm diode laser. The energy transfer from Yb^3+ to Er^3+ notably enhanced the up-conversion luminescence intensity. The possible up-conversion mechanisms and processes were proposed based on the power dependence of the luminescence intensities. The temperature-dependent up-conversion luminescence and temperature sensing performances of the sample were discussed according to the fluorescence intensity ratio of green emissions originating from ~2H(11/2)/~4S(3/2)→~4I(15/2) transitions of Er^3+ in the range from 307 K to 570 K under the excitation of 980 nm laser with power of 260 mW. The dependence of the fluorescence intensity ratio on temperature was fitted with an exponential function and the effective energy difference obtained was 690 cm^(–1), which further gave a relative temperature sensitivity of 1.1%/K at 307 K. The results suggested that the Yb^3+-Er^3+ co-doped K2GdF5 sample is a promising candidate for optical temperature sensor.Yb^3+-Er^3+ co-doped K2GdF5 up-conversion phosphor was successfully synthesized by a solid-state reaction method. The phase purity and structure of the sample were characterized by powder X-ray diffraction. The sample emitted orange light at room temperature and its up-conversion spectra at different temperatures were recorded under the excitation of a 980 nm diode laser. The energy transfer from Yb^3+ to Er^3+ notably enhanced the up-conversion luminescence intensity. The possible up-conversion mechanisms and processes were proposed based on the power dependence of the luminescence intensities. The temperature-dependent up-conversion luminescence and temperature sensing performances of the sample were discussed according to the fluorescence intensity ratio of green emissions originating from ~2H(11/2)/~4S(3/2)→~4I(15/2) transitions of Er^3+ in the range from 307 K to 570 K under the excitation of 980 nm laser with power of 260 mW. The dependence of the fluorescence intensity ratio on temperature was fitted with an exponential function and the effective energy difference obtained was 690 cm^(–1), which further gave a relative temperature sensitivity of 1.1%/K at 307 K. The results suggested that the Yb^3+-Er^3+ co-doped K2GdF5 sample is a promising candidate for optical temperature sensor.

关 键 词:luminescence exponential excitation phosphor emitted emissions fitted orange candidate originating 

分 类 号:TQ422[化学工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象