检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安科技大学电气与控制工程学院,陕西西安710054
出 处:《消防科学与技术》2017年第4期493-496,共4页Fire Science and Technology
基 金:国家自然科学基金资助项目(51277149);陕西省教育厅自然科学专项课题(14JKk1467)
摘 要:为实现低照度室内火灾的早期预警,提出一种计算机视觉检测方法。通过摄像头获取图像,采用自适应中值滤波对图像进行去噪,采用直方图均衡化进行增强,并采用基于改进学习率的混合高斯模型提取烟雾区域,对所提取烟雾的纹理特征、运动方向特征以及面积特征进行融合,采用基于支持向量机的识别算法对烟雾与干扰物进行分类检测。实验结果表明,该算法可以有效区分烟雾与干扰物,有较高的识别率与鲁棒性。In order to achieve the early fire warning of low illumination indoors environment,a computer vision detection method was proposed.Images of low illumination indoors were obtained from the camera.After image denoising by adaptive median filter,and image enhancement by histogram equalization,smoke area was extracted by method based on Gaussian mixture model which is improved on the vector.By integrating features of the texture characteristics,movement direction feature and the area feature of smoke,smoke and distractions were finally classified based on recognition algorithm of support vector machine.The experimental results showed that the smoke algorithm not only can effectively distinguish between smoke and distractions,but also has higher recognition rate and robustness.
分 类 号:X294.4[环境科学与工程—环境科学] TP391.4[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.116.27.229