YN2 monolayer: Novel p-state Dirac half metal for high-speed spintronics  被引量:4

YN2 monolayer: Novel p-state Dirac half metal for high-speed spintronics

在线阅读下载全文

作  者:Zhifeng Liu Junyan Liu Jijun Zhao 

机构地区:[1]School of Physical Science and Technology, Inner Mongolia University, Hohhot 010021, China [2]Beijing Computational Science Research Center, Beijing 100094, China [3]Key Laboratory of Materials Modification by Laser, Ion and Electron Beams, Dalian University of Technology, Dalian 116024, China

出  处:《Nano Research》2017年第6期1972-1979,共8页纳米研究(英文版)

摘  要:In spintronics, it is highly desirable to find new materials that can simultaneously possess complete spin-polarization, high-speed conduction electrons, large Curie temperature, and robust ferromagnetic ground states. Using first-principles calculations, we demonstrate that the stable YN2 monolayer with octahedral coordination is a novel p-state Dirac half metal (DHM), which not only has a fully spin-polarized Dirac state, but also the highest Fermi velocity (3.74×10^5 m/s) of the DHMs reported to date. In addition, its half-metallic gap of 1.53 eV is large enough to prevent the spin-flip transition. Because of the strong nonlocal p orbitals of N atoms (N-p) direct exchange interaction, the Curie temperature reaches over 332 K. Moreover, its ferromagnetic ground state can be well preserved under carrier doping or external strain. Therefore, the YN2 monolayer is a promising DHM for high-speed spintronic devices and would lead to new opportunities in designing other p-state DHMs.In spintronics, it is highly desirable to find new materials that can simultaneously possess complete spin-polarization, high-speed conduction electrons, large Curie temperature, and robust ferromagnetic ground states. Using first-principles calculations, we demonstrate that the stable YN2 monolayer with octahedral coordination is a novel p-state Dirac half metal (DHM), which not only has a fully spin-polarized Dirac state, but also the highest Fermi velocity (3.74×10^5 m/s) of the DHMs reported to date. In addition, its half-metallic gap of 1.53 eV is large enough to prevent the spin-flip transition. Because of the strong nonlocal p orbitals of N atoms (N-p) direct exchange interaction, the Curie temperature reaches over 332 K. Moreover, its ferromagnetic ground state can be well preserved under carrier doping or external strain. Therefore, the YN2 monolayer is a promising DHM for high-speed spintronic devices and would lead to new opportunities in designing other p-state DHMs.

关 键 词:SPINTRONICS Dirac half metalYN2 monolayer FERROMAGNETISM 

分 类 号:O[理学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象