检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:周竹[1,2,3] 尹建新[1,2,3] 周素茵[1,2,3] 周厚奎[1,2,3] ZHOU Zhu YIN Jianxin ZHOU Suyin ZHOU Houkui(School of Information Engineering, Zhejiang A & F University, Lin & an 311300, Zhejiang, China Zhejiang Provincial Key Laboratory of Forestry Intelligent Monitoring and Information Technology, Zhejiang A & F University, Lin&an 311300, Zhejiang, China Research Center for Smart Agriculture and Forestry, Zhejiang A & F University, Lin’an 311300, Zhejiang, China)
机构地区:[1]浙江农林大学信息工程学院,浙江临安311300 [2]浙江农林大学浙江省林业智能监测与信息技术研究重点实验室,浙江临安311300 [3]浙江农林大学智慧农林业研究中心,浙江临安311300
出 处:《浙江农林大学学报》2017年第3期520-527,共8页Journal of Zhejiang A&F University
基 金:浙江省自然科学基金资助项目(LQ13F050006;LY15C140005);浙江农林大学智慧农林业中心预研项目(2013ZHNL03);浙江农林大学科研发展基金资助项目(2012FR085)
摘 要:为了实现木板材依据节子进行自动化分级,采用近红外光谱技术研究了多种针叶材表面节子缺陷的检测方法。采用Smart Eye 1700近红外光谱仪获取北美黄杉Pseudotsuga menziesii,铁杉Tsuga chinensis,云杉Picea asperata,白云杉Picea glauca-英格曼云杉Picea engelmannii-扭叶松Pinus contorta-冷杉Abies laciocarp a(SPF)等4种板材的近红外光谱(1 000~1 650 nm),比较了光谱预处理方法、建模方法对节子识别的影响,并首次对多种针叶树材进行了节子识别的适应性研究,随后引入一种新的变量选择方法即随机青蛙算法用于优选节子检测的特征波长,在此基础上建立了板材节子识别的最小二乘-支持向量机(LS-SVM)模型。结果显示:一阶导数光谱预处理结合LS-SVM所建混合树种板材节子识别模型性能最优。随机青蛙算法提取了8个特征波长变量,仅占全波段变量的1.23%,所建简化模型效果最好。该模型对测试集的敏感性、特异性和识别准确率分别为98.49%,93.42%和96.30%。近红外光谱技术结合化学计量学方法可以对针叶材树种板材的表面节子进行快速准确检测,随机青蛙算法是提取板材表面节子缺陷特征的有效方法。该结果可为下一步搭建木材节子快速检测系统提供技术支撑。To develop a calibration model for rapid, accurate, and nondestructive grading of wood on the basis of knots, near infrared spectroscopy (NIRS) technology was used on coniferous boards from Douglas fir (Pseu- dotsuga menziesii) , Chinese hemlock ( Tsuga chinensis ) , Dragon spruce (Picea asperata) , and Spruce (Picea glauca and Picea engelmannii)-Pine (Pinus contorta)-Fir (Abies lasiocarpa) (SPF). Altogether 1 056 spec- trums of samples were obtained in the wavelength range of 1 000-1 650 nm by SmartEyel700. Spectral pre-treatment methods, including standard normal variate (SNY) and first derivative (FD) as well as modelling methods such as principal component analysis-linear discriminant analysis (PCA-LDA), partial least squares- linear discriminant analysis (PLS-LDA), and least squares-support vector machine (LS-SYM) were used and compared. The experiments also explored the ability of using a model built for one species to predict samples from other species. Then, a random frog algorithm was applied to select effective wavelengths (EWs). Finally, aLS-SYM model was established to detect knot defect on board surfaces based on eight effective wavelengths (EWs) or only 1 . 2 3 % of the ful l wavelengths with results compared based on sensitivity, specificity, and accu-racy. Results of the validation set of mixed boards were: sensitivity--9 8 . 49%, specificity--9 3 . 42%, and accu-racy--96.30%. Thus, near infrared spectroscopy combined with chemometric methods could be used to detect surface knots on boards for different species of wood with the random frog algorithm being a powerful tool for selecting efficient variables to optimize the model and improve detection efficiency.
关 键 词:木材科学与技术 近红外光谱 针叶材 板材 节子 随机青蛙算法 最小二乘-支持向量机
分 类 号:S781.5[农业科学—木材科学与技术] O657.3[农业科学—林学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222