Instability Analysis of Positron-Acoustic Waves in a Magnetized Multi-Species Plasma  

Instability Analysis of Positron-Acoustic Waves in a Magnetized Multi-Species Plasma

在线阅读下载全文

作  者:M.A.Hossen M.G.Shah M.R.Hossen A.A.Mamun 

机构地区:[1]Department of Physics,Jahangirnagar University,Savar,Dhaka-1342,Bangladesh [2]Department of Physics,Hajee Mohammad Danesh Science and Technology University,Dinajpur-5200,Bangladesh [3]Department of General Educational Development,Daffodil International University,Sukrabad,Dhaka-1207,Bangladesh

出  处:《Communications in Theoretical Physics》2017年第4期458-466,共9页理论物理通讯(英文版)

摘  要:The nonlinear propagation of electrostatic excitations and their multi-dimensional instability in a magnetized, degenerate electron-positron-ion(EPI) plasma system(containing inertial cold positrons, relativistic degenerate electrons and hot positrons, and negatively charged immobile heavy ions) are theoretically investigated. The reductive perturbation method is employed to derive the Zakharov–Kuznetsov equation which admits a localized solitary wave solution for small but finite amplitude limit, and the multi-dimensional instability of the positron acoustic solitary waves(PASWs) is studied by the small-k perturbation expansion method. It is found that the basic characteristics(viz. phase speed, amplitude, width) of the PASWs are significantly affected by the degree of obliqueness, relativistic degeneracy,and plasma particle number densities. The instability criterion and its growth rate, which are depending on the magnetic field and the propagation directions of both the PASWs, and their perturbation modes are discussed. The present analysis can be helpful in understanding the nonlinear phenomenon in dense astrophysical as well as space plasma systems,especially in pulsar environments.The nonlinear propagation of electrostatic excitations and their multi-dimensional instability in a magnetized, degenerate electron-positron-ion(EPI) plasma system(containing inertial cold positrons, relativistic degenerate electrons and hot positrons, and negatively charged immobile heavy ions) are theoretically investigated. The reductive perturbation method is employed to derive the Zakharov–Kuznetsov equation which admits a localized solitary wave solution for small but finite amplitude limit, and the multi-dimensional instability of the positron acoustic solitary waves(PASWs) is studied by the small-k perturbation expansion method. It is found that the basic characteristics(viz. phase speed, amplitude, width) of the PASWs are significantly affected by the degree of obliqueness, relativistic degeneracy,and plasma particle number densities. The instability criterion and its growth rate, which are depending on the magnetic field and the propagation directions of both the PASWs, and their perturbation modes are discussed. The present analysis can be helpful in understanding the nonlinear phenomenon in dense astrophysical as well as space plasma systems,especially in pulsar environments.

关 键 词:instability analysis solitary waves magnetized plasma DEGENERACY relativistic effect 

分 类 号:O53[理学—等离子体物理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象