机构地区:[1]State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 210008, China [2]University of Chinese Academy of Sciences, Beijing 100049, China
出 处:《Journal of Environmental Sciences》2017年第5期247-256,共10页环境科学学报(英文版)
基 金:supported by the Special Fund for Agro-scientific Research in the Public Interest of China(No.201203050);the National Science Foundation of China(No.41171233);the Natural Science Foundation of Jiangsu Province,China(No.BK20131044)
摘 要:The swine effluent studied was collected from scale pig farms,located in Yujiang County of Jiangxi Province,China,and duckweed(Spriodela polyrrhiza) was selected to dispose the effluent.The purpose of this study was to elucidate the effects of duckweed growth on the dissolved organic matter composition in swine effluent.Throughout the experiment period,the concentrations of organic matter were determined regularly,and the excitationemission matrix(3DEEM) spectroscopy was used to characterize the fluorescence component.Compared with no-duckweed treatments(controls),the specific ultra-violet absorbance at 254 nm(SUVA254) was increased by a final average of 34.4%as the phytoremediation using duckweed,and the removal rate of DOC was increased by a final average of 28.0%.In swine effluent,four fluorescence components were identified,including two protein-like(tryptophan,tyrosine) and two humic-like(fulvic acids,humic acids) components.For all treatments,the concentrations of protein-like components decreased by a final average of 69.0%.As the growth of duckweed,the concentrations of humic-like components were increased by a final average of 123.5%than controls.Significant and positive correlations were observed between SUVA254 and humic-like components.Compared with the controls,the humification index(HIX) increased by a final average of 9.0%for duckweed treatments.Meanwhile,the duckweed growth leaded to a lower biological index(BIX) and a higher proportion of microbial-derived fulvic acids than controls.In conclusion,the duckweed remediation not only enhanced the removal rate of organic matter in swine effluent,but also increased the percent of humic substances.The swine effluent studied was collected from scale pig farms,located in Yujiang County of Jiangxi Province,China,and duckweed(Spriodela polyrrhiza) was selected to dispose the effluent.The purpose of this study was to elucidate the effects of duckweed growth on the dissolved organic matter composition in swine effluent.Throughout the experiment period,the concentrations of organic matter were determined regularly,and the excitationemission matrix(3DEEM) spectroscopy was used to characterize the fluorescence component.Compared with no-duckweed treatments(controls),the specific ultra-violet absorbance at 254 nm(SUVA254) was increased by a final average of 34.4%as the phytoremediation using duckweed,and the removal rate of DOC was increased by a final average of 28.0%.In swine effluent,four fluorescence components were identified,including two protein-like(tryptophan,tyrosine) and two humic-like(fulvic acids,humic acids) components.For all treatments,the concentrations of protein-like components decreased by a final average of 69.0%.As the growth of duckweed,the concentrations of humic-like components were increased by a final average of 123.5%than controls.Significant and positive correlations were observed between SUVA254 and humic-like components.Compared with the controls,the humification index(HIX) increased by a final average of 9.0%for duckweed treatments.Meanwhile,the duckweed growth leaded to a lower biological index(BIX) and a higher proportion of microbial-derived fulvic acids than controls.In conclusion,the duckweed remediation not only enhanced the removal rate of organic matter in swine effluent,but also increased the percent of humic substances.
关 键 词:Swine effluent Duckweed Dissolved organic matter Excitation-emission matrix spectroscopy Phytoremediation
分 类 号:X713[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...