检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Cuifang SUN Zhi CHENG
机构地区:[1]School of Mathematics and Computer Science, Anhui Normal University, Anhui 241003, P. R. China
出 处:《Journal of Mathematical Research with Applications》2017年第3期274-280,共7页数学研究及应用(英文版)
基 金:Supported by the Research Culture Fundation of Anhui Normal University(Grant No.2014xmpy11);the National Natural Science Foundation of China(Grant No.11471017)
摘 要:Let p ≡ 2(mod 3) be an odd prime and α be a positive integer. In this paper,for any integer c, we obtain a formula for the number of solutions of the cubic congruence x^3+ y^3≡ c(mod p~α) with x, y units, nonunits and mixed pairs, respectively. We resolve a problem posed by Yang and Tang.Let p ≡ 2(mod 3) be an odd prime and α be a positive integer. In this paper,for any integer c, we obtain a formula for the number of solutions of the cubic congruence x^3+ y^3≡ c(mod p~α) with x, y units, nonunits and mixed pairs, respectively. We resolve a problem posed by Yang and Tang.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.221.95.53