机构地区:[1]Research Center of Fluid Machinery Engineering and Technology,Jiangsu University,Zhenjiang 212013,China [2]Department of Mechanical Engineering,Eindhoven University of Technology,Eindhoven 5600MB,TheNetherlands
出 处:《Journal of Hydrodynamics》2017年第2期361-375,共15页水动力学研究与进展B辑(英文版)
基 金:Project supported by the National Natural Science Foun-dation of China(Grant No.51479083);the Prospective Joint Research Project of Jiangsu Province(Grant No.BY2015064-08);The Primary Research and Development Plan of Jiangsu Province(Grant Nos.BE2015001-3,BE2015146);the 333 Project of Jiangsu Province;Six Talent Peaks Project in Jiangsu Province(Grant No.HYGC-008)
摘 要:The cavitation shedding flow around a 3-D Clark-Y hydrofoil is simulated by using an improved filter-based model (FBM) and a mass transfer cavitation model with the consideration of the maximum density ratio effect between the liquid and the vapor. The unsteady cloud cavity shedding features around the Clark-Y hydrofoil are accurately captured based on an improved FBM model and a suitable maximum density ratio. Numerical results show that the predicted cavitation patterns and evolutions compare well with the experimental visualizations, and the prediction errors of the time-averaged lift coefficient, drag coefficient and Strouhal number St for the cavitation number o- = 0.8, the angle of attack a= 8°at a Reynolds number Re = 7 x 10^5 are only 3.29%, 2.36% and 9.58%, respectively. It is observed that the cavitation shedding flow patterns are closely associated with the vortex structures identified by the Q- criterion method. The predicted cloud cavitation shedding flow shows clearly three typical stages: (1) Initiation of the attached sheet cavity, the growth toward the trailing edge. (2) The formation and development of the re-entrant jet flow. (3) Large scale cloud cavity sheds downstream. Numerical results also indicate that the non-uniform adverse pressure gradient is the main driving force of the re-entrant jet, which results in the U-shaped cavity and the 3-D bubbly structure during the cloud cavity shedding.The cavitation shedding flow around a 3-D Clark-Y hydrofoil is simulated by using an improved filter-based model (FBM) and a mass transfer cavitation model with the consideration of the maximum density ratio effect between the liquid and the vapor. The unsteady cloud cavity shedding features around the Clark-Y hydrofoil are accurately captured based on an improved FBM model and a suitable maximum density ratio. Numerical results show that the predicted cavitation patterns and evolutions compare well with the experimental visualizations, and the prediction errors of the time-averaged lift coefficient, drag coefficient and Strouhal number St for the cavitation number o- = 0.8, the angle of attack a= 8°at a Reynolds number Re = 7 x 10^5 are only 3.29%, 2.36% and 9.58%, respectively. It is observed that the cavitation shedding flow patterns are closely associated with the vortex structures identified by the Q- criterion method. The predicted cloud cavitation shedding flow shows clearly three typical stages: (1) Initiation of the attached sheet cavity, the growth toward the trailing edge. (2) The formation and development of the re-entrant jet flow. (3) Large scale cloud cavity sheds downstream. Numerical results also indicate that the non-uniform adverse pressure gradient is the main driving force of the re-entrant jet, which results in the U-shaped cavity and the 3-D bubbly structure during the cloud cavity shedding.
关 键 词:Cloud cavitation shedding flow filter-based model turbulent viscosity Clark-Y hydrofoil
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...