Molecular regulation of sucrose catabolism and sugar transport for development~ defence and phloem function  被引量:9

Molecular regulation of sucrose catabolism and sugar transport for development,defence and phloem function

在线阅读下载全文

作  者:Jun Li Limin Wu Ryan Foster Yong-Ling Ruan 

机构地区:[1]Australia-China Research Centre for Crop Improvement and School of Environmental and Life Sciences, The University of Newcastle,NSW 2308, Australia [2]CSIRO Agriculture, Canberra, ACT 26oi, Australia

出  处:《Journal of Integrative Plant Biology》2017年第5期322-335,共14页植物学报(英文版)

基  金:financially supported by Australia Research Council(DP110104931,DP120104148)to YLR

摘  要:Sucrose (Suc) is the major end product of photosynthesis in mesophyll cells of most vascular plants. It is loaded into phloem of mature leaves for long-distance translocation to non-photosynthetic organs where it is unloaded for diverse uses. Clearly, Suc transport and metabolism is central to plant growth and development and the functionality of the entire vascular system. Despite vast information in the literature about the physiological roles of individual sugar metabolic enzymes and transporters, there is a lack of systematic evaluation about their molecular regulation from transcriptional to post-translational levels. Knowledge on this topic is essential for understanding and improving plant development, optimizing resource distri- bution and increasing crop productivity. We therefore focused our analyses on molecular control of key players in Suc metabolism and transport, including: (i) the identifica- tion of promoter elements responsive to sugars and hormones or targeted by transcription factors and micro- RNAs degrading transcripts of target genes; and (ii) modulation of enzyme and transporter activities through protein-protein interactions and other post-translational modifications. We have highlighted major remaining questions and discussed opportunities to exploit current understanding to gain new insights into molecular control of carbon partitioning for improving plant performance.Sucrose (Suc) is the major end product of photosynthesis in mesophyll cells of most vascular plants. It is loaded into phloem of mature leaves for long-distance translocation to non-photosynthetic organs where it is unloaded for diverse uses. Clearly, Suc transport and metabolism is central to plant growth and development and the functionality of the entire vascular system. Despite vast information in the literature about the physiological roles of individual sugar metabolic enzymes and transporters, there is a lack of systematic evaluation about their molecular regulation from transcriptional to post-translational levels. Knowledge on this topic is essential for understanding and improving plant development, optimizing resource distri- bution and increasing crop productivity. We therefore focused our analyses on molecular control of key players in Suc metabolism and transport, including: (i) the identifica- tion of promoter elements responsive to sugars and hormones or targeted by transcription factors and micro- RNAs degrading transcripts of target genes; and (ii) modulation of enzyme and transporter activities through protein-protein interactions and other post-translational modifications. We have highlighted major remaining questions and discussed opportunities to exploit current understanding to gain new insights into molecular control of carbon partitioning for improving plant performance.

关 键 词:William J. Lucas University of California DAVIS USA 

分 类 号:Q943.2[生物学—植物学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象