检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院紫金山天文台,南京210008 [2]中国科学院空间目标与碎片观测重点实验室,南京210008
出 处:《天文学报》2017年第3期89-96,共8页Acta Astronomica Sinica
基 金:中国科学院国防科技创新基金项目(CXJJ-15S129)资助
摘 要:在空间目标的光学观测中,由于跟踪波门内多个量测事件频发,导致跟踪量测的不确定,降低自动跟踪精度引起跟踪不稳.结合Kalman滤波和概率数据关联算法,实现了空间目标自适应跟踪.方法通过Kalman滤波预测确定关联区域,采用概率数据关联技术获得等效量测作为Kalman滤波的有效馈源.实验表明:方法可以有效地提高自动跟踪精度,改善空间目标自动跟踪鲁棒性.In the optical tracking of space objects, multiple measurements are often detected in the observing gate, which brings about the uncertainty in the tracking accuracy and causes the unstability along the tracking path. This kind of condition will eventually interrupt the track and lead to the lost of the target. A new approach, combining the Kalman filter and probabilistic data association, is proposed for the adaptive tracking of space objects. This method employs Kalman filter to predict the gate of association, and uses probabilistic data association to obtain the equivalent measurement as an effective feed instead. The experiments show that this technique can effectively improve the tracking accuracy as well as the robustness for the automatic tracking of space objects.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.60