机构地区:[1]Collaborative Innovation Center of Chemistry for Energy Materials(iChEM),Department of Chemistry,Fudan University [2]The Molecular Foundry,Lawrence Berkeley National Laboratory
出 处:《Chinese Chemical Letters》2017年第4期893-899,共7页中国化学快报(英文版)
基 金:the National Natural Science Foundation of China (Nos.21432004,21529201,91527301);the Ministry of Science and Technology of China(No.2013CB834501);the Ministry of Education of China Research Fund for the Doctoral Program and of China for financial support;support from the Molecular Foundry,Lawrence Berkeley National Laboratory,supported by the Office of Science,Office of Basic Energy Sciences,Scientific User Facilities Division,of the U.S.Department of Energy under Contract No.DE-AC0205CH11231
摘 要:Four water-soluble porous supramolecular organic framework drug delivery systems(sof-DDSs) have been used to adsorb doxorubicin(DOX) in water at physiological pH of 7.4,which is driven exclusively by hydrophobicity.The resulting complexes DOX@SOFs are formed instantaneously upon dissolving the components in water.The drug-adsorbed sof-DDSs can undergo plasm circulation with important maintenance of the drug and overcome the multidrug resistance of human breast MCF-7/Adr cancer cells.DOX is released readily in the cancer cells due to the protonation of its amino group in the acidic medium of cancer cells.In vitro and in vivo experiments reveal that the delivery of SOF-a-d remarkably improve the cytotoxicity of DOX for the MCF-7/Adr cells and tumors,leading to 13-19-fold reduction of the 1C_(50)values as compared with that of DOX.This new sof-DDSs strategy omits the indispensable loading process required by most of reported nano-scaled carriers for neutral hydrophobic chemotherapeutic agents,and thus should be highly valuable for future development of low-cost delivery systems.Four water-soluble porous supramolecular organic framework drug delivery systems(sof-DDSs) have been used to adsorb doxorubicin(DOX) in water at physiological pH of 7.4,which is driven exclusively by hydrophobicity.The resulting complexes DOX@SOFs are formed instantaneously upon dissolving the components in water.The drug-adsorbed sof-DDSs can undergo plasm circulation with important maintenance of the drug and overcome the multidrug resistance of human breast MCF-7/Adr cancer cells.DOX is released readily in the cancer cells due to the protonation of its amino group in the acidic medium of cancer cells.In vitro and in vivo experiments reveal that the delivery of SOF-a-d remarkably improve the cytotoxicity of DOX for the MCF-7/Adr cells and tumors,leading to 13-19-fold reduction of the 1C_(50)values as compared with that of DOX.This new sof-DDSs strategy omits the indispensable loading process required by most of reported nano-scaled carriers for neutral hydrophobic chemotherapeutic agents,and thus should be highly valuable for future development of low-cost delivery systems.
关 键 词:Supramolecular organic framework Doxorubicin Drug delivery In situ preparation Hydrophobicity Human breast cancer Controlled release
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...