检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:陈伟龙[1] 陈春良[1] 陈康柱[2] 刘彦[1]
机构地区:[1]装甲兵工程学院技术保障工程系,北京100072 [2]装甲兵工程学院训练部,北京100072
出 处:《兵工学报》2017年第5期1011-1019,共9页Acta Armamentarii
摘 要:针对一体化进攻作战中战损装备众多、抢修时间与抢修力量有限的矛盾,将战场抢修、伴随保障、任务动态调度结合起来,进行了进攻作战抢修任务动态调度研究。提出考虑不确定性的进攻作战抢修任务动态调度的现实军事问题,构建其数学模型,分析核心影响因素。针对问题特点,设计了基于变体遗传算法的模型求解方法,并运用Matlab软件进行了15辆待修装备、3个抢修单元的动态调度示例求解。示例结果表明:通过实施抢修任务动态调度,进攻作战部队能够获得约77 h的二次作战总时间,并大大减少决策时间、降低决策工作量和人为决策风险。The dynamic scheduling of battlefield rush-repair tasks is studied in consideration of many damaged equipment, the limited battlefield rush-repair time and power in the integrated offensive opera- tion, which combines battlefield rush-repair, accompanied logistics and task dynamic scheduling. The dynamic battlefield-rush-repair task scheduling under uncertainty, which is a real military problem, is put forward. A mathematical model is established, and the key influence factors are analyzed. A variant ge- netic algorithm is designed to solve the problem according to its characteristics. A scheduling example with 15 equipment to be repaired and 3 repair groups is solved by using Matlab. The results of example show that offensive forces can get more combat time to participating in offensive operation again about 77 hours through implementing dynamic scheduling of battlefield rush-repair tasks. And it can greatly reduce decision time, decision workload and subjective decision risk
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117