Solvable Lie Algebras with Nilradical Q_(2n+1) and Their Casimir Invariants  

幂零根基为Q_(2n+1)的可解李代数及其Casimir不变量(英文)

在线阅读下载全文

作  者:李小朝 靳全勤 

机构地区:[1]Department of Mathematics,Huanghuai University [2]Department of Mathematics,Tongji University

出  处:《Chinese Quarterly Journal of Mathematics》2017年第1期99-110,共12页数学季刊(英文版)

基  金:Supported by the National Natural Science Foundation of China(11071187);Supported by the Basic and Advanced Technology Research Project of Henan Province(142300410449);Supported by the Natural Science Foundation of Education Department of Henan Province(16A110035)

摘  要:The finite-dimensional indecomposable solvable Lie algebras s with Q_(2n+1) as their nilradical are studied and classified and their Casimir invariants are calculated. It turns out that the dimension of s is at most dim Q_(2n+1)+2.

关 键 词:solvable Lie algebra NILRADICAL Casimir invariant 

分 类 号:O152.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象