检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘畅[1]
机构地区:[1]沈阳职业技术学院信息工程学院,辽宁沈阳110045
出 处:《量子电子学报》2017年第3期293-304,共12页Chinese Journal of Quantum Electronics
基 金:国家自然科学基金;61273078~~
摘 要:为了对现有机器人的物体识别进行优化和改进,提出了一种新的权重计算方法进行室内场景图像识别。该方法通过对输入场景的转换获取无向带权图,在表面法方向的基础上,使用表面凹凸度这一指标来进行表面粗糙度综合判定,取代了传统的布尔判定,大大提升了抗噪性能,避免出现错误传递放大的情况。基于快速图像分割算法及时识别未知物体。实验结果表明:提出方法的鲁棒性及抗噪能力均较强,优于单纯基于法方向的方法。与基于深度学习与推测的同类方法相比,所提方法性能更好,更适用于实际识别。In order to optimize and improve object recognition of the existing robots, a new weight calculation method for interior scene images identification is proposed. The undirected weighted graph is obtained by converting the input scene. Based on surface normal direction, comprehensive determination of surface roughness is carried out using the concave and convex degree index instead of the traditional Boolean decision, which greatly enhances the anti-noise performance and avoids the error propagation amplification. The unknown objects are identified in time based on fast image segmentation algorithm. Experiment results show that the robustness and anti-noise ability of the proposed method are both strong, and the proposed method is better than methods based on normal direction only. Compared with other methods based on deep learning and conjecture, the proposed method has better performance, and it's more applicable to the practical identification.
关 键 词:图像处理 权重 凹凸度 快速图像分割算法 布尔判断 图像识别
分 类 号:TP391[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.3