检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]吉林大学地球探测科学与技术学院,长春130026 [2]白城师范学院旅游与地理科学学院,吉林白城137000
出 处:《吉林大学学报(地球科学版)》2017年第3期907-915,共9页Journal of Jilin University:Earth Science Edition
基 金:中国地质调查局项目(12120115063701)~~
摘 要:为了深化遥感监测方法在生态环境调查中的应用,本文以吉林西部为试验区,设计了一种多时相遥感数据分类方案。该方案以物候信息为主,结合地物特征变量(植被、水体和土地信息)构建的多维特征空间数据集用于土地覆被分类。该遥感分类方案提取了9种地表覆被类型,结果表明:地表植被季节变化信息和土地利用信息的引入能明显改善土地覆被的分类精度;与基于原始波段的分类方案相比,多时相遥感数据分类方案的分类精度最好,总体分类精度为95.50%,Kappa系数为95.04%。With the rapid development of 3S (remote sensing (RS), geographical information system (GIS), global positioning system (GPS)) technology, the satellite image data used for monitoring the surface vegetation cover is vast. Western Jilin region was selected as the experimental zone. Using various functions, the land cover classification scheme was proposed to quickly and accurately extract the land cover information in the test area based on multi-temporal satellite images, coupled with the main classified variables including the seasonal variation information of vegetation, the water information and the land use information. Furthermore, the extracted data were statistically analyzed to verify the feasibility and rationality of the method. Finally, the results are as follows: 1) The way combined these classification features for extracting accuracy. Especially, the introduction vegetation cover and the land-use classification accuracy of land cover; the Kappa coefficient of classification land cover type effectively improved the overall classification of the changed information, including the seasonal variation of and land-cover information, could significantly improve the 2) The overall classification accuracy of the algorithm was 95.5%, was 95.04%.
关 键 词:吉林西部 多时相遥感数据 土地覆被分类 物候信息
分 类 号:P407.8[天文地球—大气科学及气象学] TP751[自动化与计算机技术—检测技术与自动化装置]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195