检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:刘玉[1] 秦盛伟[1] 左训伟[1] 陈乃录[2] 戎咏华[1]
机构地区:[1]上海交通大学材料科学与工程学院,上海200240 [2]上海交通大学材料科学与工程学院上海市激光制造与材料改性重点实验室,上海200240
出 处:《金属学报》2017年第6期733-742,共10页Acta Metallurgica Sinica
基 金:国家自然科学基金项目No.51371117~~
摘 要:利用温度场、组织场和应力场相互耦合的数学模型对直径60 mm的40CrNiMo水淬圆棒的淬火应力进行研究。结果表明,有限元模拟的淬火应力及其分布与XRD测量结果相符,论证了所运用的温度场、组织场和应力场相互耦合的数学模型(包括建立的相变塑性函数)的正确性。通过计算机模拟分离了淬火马氏体钢中的热应力和组织应力,揭示了不同直径淬透圆棒试样的应力分布规律及其起因以及不同淬火介质对淬火应力的影响规律。Quenching is one of the most important heat-treatment processes for improving the mechanical properties of steel components in manufacture industry. The quenching stress is a source of cracking, which is frequently detrimental to steel properties. Therefore, the investigation of quenching stress is very important for the control of distortion, cracking and residual stress distributions of components. In the study of quenching stress, the measurement of stress distribution is necessary to the stress analysis and design of quenching process. However, in most cases, the cracking of a quenched component is caused by transient stress during quenching, while experiment can only measures the final internal stress (residual stress), rather than transient stress. As a result, the measurement of residual stress associated with finite element simulation (FES) has been a mainstream direction in the investigation of quenching stress. In this work, a full through-hardened 40CrNiMo cylinder with 60 mm diameter was water-quenched, and cooling curves at three positions along the radius of cylinder were measured. Then, an optimized heat transfer coefficient as a function of surface temperature was obtained by fitting with the measured cooling curves using the trial and error method. Based on an exponent-modified (Ex-Modified) normalized function describing transformation plasticity kinetics proposed, the thermo-elasto-plastic constitutive equations were deduced. The commercial finite element software, Abaqus/Standard, was used to solve the coupled temperature field, microstructure field and stress (strain) field. The results indicate that the quenching stress and its distribution predicted by FES is well consistent with those measured by XRD, which verified that the models employed in coupling of thermal field, phase transformation field and stress field including transformation plasticity function proposed are correct. Meanwhile, the features of residual stress distribution were revealed that compressive stress ex
关 键 词:全淬透圆柱件 淬火应力 热应力 组织应力 有限元模拟
分 类 号:TG156.34[金属学及工艺—热处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117