检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京航天长征飞行器研究所,北京100076 [2]北京遥测技术研究所,北京100076
出 处:《遥测遥控》2017年第2期7-12,共6页Journal of Telemetry,Tracking and Command
摘 要:针对Quinn算法在信号频率接近量化频率时估计误差较大的问题,提出一种改进的Quinn(I-Quinn)算法。改进算法首先对信号进行频移,使信号频率始终位于相邻量化频率中心区域,然后再用Quinn算法估计信号频率,便可以获得较高的估计精度。I-Quinn算法改进了判据,在较低的信噪比(SNR)下仍能保持较高的频率估计精度。仿真结果表明:在低信噪比条件下改进算法估计性能不随被估计信号的频率分布而产生波动,在整个频段内估计均方根误差(RMSE)接近克拉美-罗下界(CRLB),精度和稳定性优于同类算法。Because the frequency estimation precision of Quinn algorithm has a great deviation when the signal frequency is near to the discrete frequency, an improved Quinn(I-Quinn) algorithm is presented, which moves the signal frequency to the midpoint area of two neighboring discrete frequencies before the frequency estimation by Quinn algorithm. I-Quinn algorithm holds on high precision by using improved criterion even on the condition that the Signal to Noise Ratio(SNR) is low. The simulation results indicate that the performance of I-Quinn algorithm doesn't fluctuate with the distribution of signal frequency, its Root Mean Square Error(R/VISE) approaches to Cramer-Rao Lower Bound (CRLB) throughout the whole frequency range, and its precision and stability are better than related algorithms under low SNR conditions.
关 键 词:频率估计 Quinn算法 频谱搬移 克拉美-罗限
分 类 号:TN974[电子电信—信号与信息处理]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.138.170.222