出 处:《Acta Metallurgica Sinica(English Letters)》2017年第6期558-566,共9页金属学报(英文版)
基 金:supported by the National Natural Science Foundation of China under Grant Nos.51202194 and 51221001;the Programme of Introducing Talents of Discipline to Universities(‘‘111’’project of China)under Grant No.B08040
摘 要:Carbon/carbon (C/C) composites were deposited with graphite-like carbon (GLC) coating, and then, Arg-Gly- Asp acid (RGD) peptides were successfully immobilized onto the functionalized GLC coating. GLC coating was utilized to prevent carbon particles releasing and create a uniform surface condition for C/C composites. RGD peptides were utilized to improve biocompatibility of GLC coating. Surface chemical characterizations of functionalized GLC coating were detected by contact angle measurement, X-ray photoelectron spectroscopy and Raman spectra. Optical morphology of GLC coatings was observed by confocal laser scanning microscopy. In vitro biological performance was determined using samples seeded with MC3T3-E1 osteoblast-like cells and cultured for 1 week. Surface characterizations and morphological analysis indicated that C/C composites were covered by a dense and uniform GLC coating. Contact angle of GLC coating was reduced to 27.2° when it was functionalized by H202 oxidation at 40 ℃ for 1 h. In vitro cytological test showed that the RGD peptides immobilized GLC coating had a significant improvement in biocompatibility. It was suggested that RGD peptides provided GLC coating with a bioactive surface to improve cell adhesion and proliferation on C/C composites.Carbon/carbon (C/C) composites were deposited with graphite-like carbon (GLC) coating, and then, Arg-Gly- Asp acid (RGD) peptides were successfully immobilized onto the functionalized GLC coating. GLC coating was utilized to prevent carbon particles releasing and create a uniform surface condition for C/C composites. RGD peptides were utilized to improve biocompatibility of GLC coating. Surface chemical characterizations of functionalized GLC coating were detected by contact angle measurement, X-ray photoelectron spectroscopy and Raman spectra. Optical morphology of GLC coatings was observed by confocal laser scanning microscopy. In vitro biological performance was determined using samples seeded with MC3T3-E1 osteoblast-like cells and cultured for 1 week. Surface characterizations and morphological analysis indicated that C/C composites were covered by a dense and uniform GLC coating. Contact angle of GLC coating was reduced to 27.2° when it was functionalized by H202 oxidation at 40 ℃ for 1 h. In vitro cytological test showed that the RGD peptides immobilized GLC coating had a significant improvement in biocompatibility. It was suggested that RGD peptides provided GLC coating with a bioactive surface to improve cell adhesion and proliferation on C/C composites.
关 键 词:MC3T3-E1 osteoblast-like cells Carbon/carbon composites Graphite-like carbon (GLC) coating Arg-Gly-Asp acid (RGD) peptides Surface modification
分 类 号:R318.08[医药卫生—生物医学工程] TB306[医药卫生—基础医学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...