声触诊组织量化技术鉴别乳腺良恶性肿物的价值  

The value of virtual touch tissue quantification for differential diagnosis of benign and malignant breast masses

在线阅读下载全文

作  者:郭丹丹[1] 郭磊 刘健[1] 宋雪妮[1] 杨琳[1] 王瑛[1] 

机构地区:[1]中日友好医院超声科,北京100029 [2]北京市东城区第一人民医院功能科,北京100075

出  处:《中日友好医院学报》2017年第3期149-151,F0002,共4页Journal of China-Japan Friendship Hospital

摘  要:目的:探讨声触诊组织量化技术(VTQ)对乳腺良恶性肿瘤的鉴别诊断价值。方法:应用VTQ技术对115例患者116个乳腺肿块进行常规超声及声触诊组织量化检查,并测量声触诊剪切波速度(SWV),即VTQ值,与术后病理对照,分析乳腺良恶性肿物的差异。结果:VTQ对恶性乳腺肿块诊断价值的ROC曲线下面积为0.90(95%CI:0.85~0.96)。以SWV=3.1m/s为VTQ诊断界点的诊断乳腺恶性肿瘤的灵敏度、特异度、一致率及阳性预测值分别为88.2%、79.2%、84.5%和85.7%,且良恶性肿瘤间SWV存在显著性差异(P<0.01)。常规超声BIRADS分级判断乳腺恶性肿瘤的敏感性、特异性、准确性及阳性预测值分别为79%、89.5%、83.6%和91.5%。结论:VTQ技术较常规超声对于乳腺恶性肿瘤诊断的灵敏度更高,应用VTQ技术有助于乳腺肿块良恶性的鉴别诊断,可提高乳腺恶性肿瘤的检出率。Objective:To investigate the value of virtual touch tissue quantification (VTQ)for differential diag- nosis of benign and malignant breast lesions.Methods:A total of 116 breast masses in 115 patients were de- tected by normal ultrasound test and VTQ technique,share wave velocities (SWV)of lesions were measured, and the results were correlated with the pathologic results.The ROC curve were produced to find the cutoff value point of SWV to predict breast cancer.The difference between benign and malignant masses was ana- lyzed.Results:The ROC area of VTQ in diagnosis of malignant breast masses was 0.90(95%CI:0.85~0.96).The cut-off point of SWV was determined as 3.1m/s.The sensitivity,specificity,consistent rate and positive predic- tive value were 88.2%,79.2%,84.5% and 85.7%.The difference of SWV between malignant and benign breast masses was statistically significant (P〈0.01).These values in normal ultrasound test were 79%,89.5%,83.6% and 91.5%.Conclusion:VTQ technique can help to differentiate benign from malignant breast diseases and improve detect ability of breast lesions.

关 键 词:超声检查 乳腺疾病 声触诊组织量化 

分 类 号:R445.1[医药卫生—影像医学与核医学] R737.9[医药卫生—诊断学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象