Fabrication of a novel MOS diode by indium incorporation control for microelectronic applications  

Fabrication of a novel MOS diode by indium incorporation control for microelectronic applications

在线阅读下载全文

作  者:M.Benhaliliba C.E.Benouis M.S.Aida A.Ayeshamariam 

机构地区:[1]Material Technology Department, Physics Faculty, USTOMB University, BP1505 Oran, Algeria [2]Thin Films & Plasma Laboratory, Physics Department, Mentouri University, 25000 Constantine, Algeria [3]Department of Physics, Khadir Mohideen College, Adirampattinam, 614701, India

出  处:《Journal of Semiconductors》2017年第6期66-74,共9页半导体学报(英文版)

基  金:supported by the Algerian Ministry of High Education and Scientific Research through the CNEPRU Project(No.B00L002UN310220130011);the Anvredet Project N°18/DG/2016 “Projet Innovant:Synthèse et Caractérisation de Films Semiconducteurs Nanostructurés et Fabrication de Cellule Solaire”

摘  要:Control of the electronic parameters on a novel metal–oxide–semiconductor(MOS)diode by indium doping incorporation is emphasized and investigated.The electronic parameters,such as ideality factor,barrier height(BH),series resistance,and charge carrier density are extracted from the current–voltage(I–V)and the capacitance–voltage(C–V)characteristics.The properties of the MOS diode based on 4%,6% and 8% indium doped tin oxide are largely studied.The Ag/SnO2/nSi/Au MOS diode is fabricated by spray pyrolysis route,at 300℃ from the In-doped SnO2layer.This was grown onto n-type silicon and metallic(Au)contacts which were made by thermal evaporation under a vacuum@10^-5 Torr and having a thickness of 120 nm and a diameter of 1 mm.Determined by the Cheung-Cheung approximation method,the series resistance increases(334–534Ω)with the In doping level while the barrier height(BH)remains constant around 0.57 V.The Norde calculation technique gives a similar BH value of 0.69 V but the series resistance reaches higher values of 5500Ω.The indium doping level influences on the characteristics of Ag/SnO2:In/Si/Au MOS diode while the 4% indium level causes the capacitance inversion and the device turns into p-type material.Control of the electronic parameters on a novel metal–oxide–semiconductor(MOS)diode by indium doping incorporation is emphasized and investigated.The electronic parameters,such as ideality factor,barrier height(BH),series resistance,and charge carrier density are extracted from the current–voltage(I–V)and the capacitance–voltage(C–V)characteristics.The properties of the MOS diode based on 4%,6% and 8% indium doped tin oxide are largely studied.The Ag/SnO2/nSi/Au MOS diode is fabricated by spray pyrolysis route,at 300℃ from the In-doped SnO2layer.This was grown onto n-type silicon and metallic(Au)contacts which were made by thermal evaporation under a vacuum@10^-5 Torr and having a thickness of 120 nm and a diameter of 1 mm.Determined by the Cheung-Cheung approximation method,the series resistance increases(334–534Ω)with the In doping level while the barrier height(BH)remains constant around 0.57 V.The Norde calculation technique gives a similar BH value of 0.69 V but the series resistance reaches higher values of 5500Ω.The indium doping level influences on the characteristics of Ag/SnO2:In/Si/Au MOS diode while the 4% indium level causes the capacitance inversion and the device turns into p-type material.

关 键 词:indium incorporation MOS diode current-voltage measurements capacitance-voltage characteristics microelectronic parameters 

分 类 号:TN31[电子电信—物理电子学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象