面向大数据的网络舆情热度动态预测模型研究  被引量:37

The Internet Public Opinion Hot-degree Dynamic Prediction Model Oriented to Big Data

在线阅读下载全文

作  者:兰月新[1] 刘冰月[2] 张鹏[1] 夏一雪[1] 李昊青[1] 

机构地区:[1]中国人民武装警察部队学院,廊坊065000 [2]天津交通职业学院,天津300132

出  处:《情报杂志》2017年第6期105-110,147,共7页Journal of Intelligence

基  金:河北省科技计划项目"面向大数据的网络舆情对抗关键技术研究"(编号:16215604);国家社会科学基金青年项目"公共安全视角下网络舆情风险建模与对策研究"(编号:15CXW015);河北省社会科学发展研究课题"基于涉恐舆情综合研判的反恐情报预警研究"(编号:201604120504);河北省统计科学研究计划重点项目"大数据环境下网络舆情数据分析与决策支持研究"(编号:2016HZ09)

摘  要:[目的/意义]面向大数据研究网络舆情热度模型以及热度预测模型,能够准确把握大数据环境下网络舆情热度,并可以决定网络舆情应对和舆论引导措施的轻重缓急,具有重要的理论意义。[方法/过程]定性分析大数据环境下网络舆情热度影响因素,通过定义最大关联度向量,基于灰色关联度方法构建网络舆情热度模型,并在此基础上构建多维度logistic模型对各个媒体平台舆情信息开展预测,通过灰色关联度得出动态预测方法。[结论/结果]经过理论建模和实证分析得出构建的热度模型和热度动态预测模型是可行的,以上理论研究可为政府准确把握大数据环境下网络舆情热度,制定网络舆情引导策略提供参考依据。[ Purpose/Significance ] It is of important theoretical significance to conduct researches on the Internet public opinion hot-degree model and the hot-degree dynamic prediction model oriented to big data, which help grasp the network public opinion hot-degree accurately and determine the activities' priorities on guiding and controlling the development of the public opinions. [ Method/Process] This paper conducted a qualitative analysis of the factors of Interact public opinion hot-degree oriented to big data, and through defining the maximum relevance vector, built the Internet public opinion hot-degree model based on grey correlation method, then carded out further research on multidimensional logistic model of predicting Internet public opinion on various media platforms, which comes to a dynamic prediction model combined with gray correlation degree. [ Result/Conclusion] The feasibility of the two models was verified by an empiri- cal analysis and a theoretical modeling. The findings can provide significant reference for the government to grasp the Internet public opin- ion hot-degree oriented to big data and develop the appropriate Internet public opinion guiding strategies.

关 键 词:大数据 网络舆情 灰色关联度 热度预测 LOGISTIC 

分 类 号:C912.6[经济管理]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象