检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]火箭军工程大学信息工程系,陕西西安710025
出 处:《计算机工程与设计》2017年第6期1414-1417,1472,共5页Computer Engineering and Design
基 金:军内科研预研基金项目
摘 要:通过将主成分分析(PCA)方法集成到树突细胞算法(DCA)的数据预处理过程中,提出一种可实现信号自动提取,并根据数据及时更新信号提取方案的PCA-DCA算法。利用PCA对样本高维数据进行降维处理,根据贡献度提取输入信号,通过改进的DCA算法对抗原进行分类与检测;通过监测记录的高维数据,不断更新主成分特征向量,保证降维后数据的有效性。通过KDD CUP99数据集对该算法进行验证,相较传统DCA算法,该算法实现了对多维数据的降维处理及对DCA输入信号的自动提取,对异常数据更加敏感,检测效率更高。By integrating the principal component analysis method to the DCA's data pre-processing phase,an improved DCA with the signal presenting and updating automatically was proposed.The principal components analysis was used for the dimensionality reduction of high-dimensional data,and the DCA's input signal was presented according to the contribution,and these antigens were detected and classified using the improved DCA.The monitoring of high-dimensional data was tracked,principal component eigenvectors were updated constantly,to ensure the validity of dimensionality reduction.The dataset of KDD CUP99 was used to test this algorithm.Compared to traditional DCA,the dimensionality reduction and automatic pre-processing of DCA's input signal were achieved.Results show that the method is more sensitive to abnormity,and gets more effective detection rate.
关 键 词:树突细胞算法 主成分分析 入侵检测 人工免疫 数据预处理
分 类 号:TP393.08[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117